留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压差激活密封剂流-固相态转化分子模拟研究

徐长峰 王建军 赵楠 苏怀宇 杨思齐 付江龙 许林 王磊

徐长峰,王建军,赵楠,等. 压差激活密封剂流-固相态转化分子模拟研究[J]. 钻井液与完井液,2026,43(1):136-144 doi: 10.12358/j.issn.1001-5620.2026.01.018
引用本文: 徐长峰,王建军,赵楠,等. 压差激活密封剂流-固相态转化分子模拟研究[J]. 钻井液与完井液,2026,43(1):136-144 doi: 10.12358/j.issn.1001-5620.2026.01.018
XU Changfeng, WANG Jianjun, ZHAO Nan, et al.Molecular simulation on fluid-to-solid phase transition of pressure-activated sealants[J]. Drilling Fluid & Completion Fluid,2026, 43(1):136-144 doi: 10.12358/j.issn.1001-5620.2026.01.018
Citation: XU Changfeng, WANG Jianjun, ZHAO Nan, et al.Molecular simulation on fluid-to-solid phase transition of pressure-activated sealants[J]. Drilling Fluid & Completion Fluid,2026, 43(1):136-144 doi: 10.12358/j.issn.1001-5620.2026.01.018

压差激活密封剂流-固相态转化分子模拟研究

doi: 10.12358/j.issn.1001-5620.2026.01.018
基金项目: 中国石油基础性前瞻性科技专项“石油工程基础材料、基础元器件研究”(2023ZZ11)。
详细信息
    作者简介:

    徐长峰,1981年生,高级工程师,工程硕士,毕业于中国石油大学(华东)油气储运专业,主要从事储气库钻完井及地面集输专业工作。E-mail:xucf@petrochina.com.cn

    通讯作者:

    王建军,1979年生,正高级工程师,博士,主要从事油气井管柱力学与安全评价技术研究。电话(029)81887677;E-mail:wangjianjun005@cnpc.com.cn

  • 中图分类号: TE39

Molecular Simulation on Fluid-to-Solid Phase Transition of Pressure-Activated Sealants

  • 摘要: 压差激活密封剂是一种含有复合液滴的多分散相流体。复合液滴水化膜在漏点压差作用下变形破碎,其内核在界面活性基团的吸附作用下聚集生长,最终充填微泄漏孔隙,完成密封损伤的原位修复。前期研究探索了复合液滴结构与压差激活的构效关系,为进一步揭示活性内核的聚结衍化规律,基于水化橡胶粒子的结构参数,构建了分散相内核聚集态分子模型,并采用量子化学与分子动力学相结合的方法,分析了聚集态单体与重复片段的静电势、Fukui函数与前线轨道、聚集态空间构型的回转半径与径向分布函数,研究了分散相聚结生长的动力学过程。结果显示:①分子片段中富电子羧基O、氰基N与缺电子共轭碳链共同组成了高分子聚集态的活性位点,其中羧基O与氰基N原子展示了最强局域亲核能力,而共轭碳链则具有最强局域亲电能力;②高分子聚集态具有核-壳空间构型,羧基O、氰基N作为壳层围绕内核展现层级分布,且聚集态亲电与亲核区域呈“锁-钥”构造,有利于分散相的空间识别与稳定缔合;③分散相生长经历了外层分子链收敛、体积塌缩、初始接触与内层分子链扩散4个阶段。研究结果从原子与分子层面揭示了复合液滴分散相的聚结衍化行为,有利于进一步完善力学-化学耦合作用下密封材料的微缺陷自适应修复机理。

     

  • 图  1  压差激活密封剂力学-化学相态转化封堵模型

    图  2  内核聚集态单体、重复单元及空间构型特征

           (a) ACN、BD、AA单体及三元结构; (b) 分子单链ABA及其球形聚集态P-ABA

    图  3  聚集态高分子单体及三元聚合单元静电势

    图  4  三元聚合单元fukui函数等值面

    图  5  单体与重复单元LUMO和HOMO分布

    图  6  高分子聚集态回转半径与能量参数随时间变化

    图  7  聚集态活性N、O原子的质心间距径向分布函数

    图  8  高分子聚集态势能面

    图  9  高分子聚集态间自发缔合动力学过程

  • [1] UGARTE E R, SALEHI S. An uncertainty risk evaluation Tool for wellbore leakage prediction for plug and abandonment[C]//the SPE Western Regional Meeting. Anchorage, Alaska, USA: SPE, 2023: SPE-212957-MS.
    [2] RAHMAN S A A, PANG A L, ARSAD A, et al. The chemistry insight: epoxy sealant as an alternative remedial operation for well integrity[J]. Reviews in Chemical Engineering, 2022, 39(5): 857-873.
    [3] AL-HOUTI N, AL-OTHMAN M, AL-QASSAR K, et al. An alternative method for cement squeeze in North Kuwait: case study[C]//the SPE/ICoTA Coiled Tubing and Well Intervention Conference and Exhibition. Houston, Texas, USA: SPE, 2017: SPE-184802-MS.
    [4] 蒋孟晨, 许林, 程现华, 等. 压差激活密封剂的制备与应用[J]. 油田化学, 2021, 38(2): 216-222.

    JIANG Mengchen, XU Lin, CHENG Xianhua, et al. Preparation and application of pressure activated sealant[J]. Oilfield Chemistry, 2021, 38(2): 216-222.
    [5] 幸雪松, 许林, 冯桓榰, 等. 压差激活密封剂的制备、密封性能及机理研究[J]. 钻井液与完井液, 2019, 36(6): 789-794.

    XING Xuesong, XU Lin, FENG Huanzhi, et al. A differential pressure activated sealant: preparation, sealing performance and working mechanisms[J]. Drilling Fluid & Completion Fluid, 2019, 36(6): 789-794.
    [6] 许林, 蒋孟晨, 许洁, 等. 复合压差激活密封剂的设计及其封堵性能[J]. 天然气工业, 2020, 40(3): 107-114.

    XU Lin, JIANG Mengchen, XU Jie, et al. Design and plugging property of composite pressure activated sealant[J]. Natural Gas Industry, 2020, 40(3): 107-114.
    [7] 许林, 刘书杰, 许明标, 等. 压差激活密封剂的微缺陷自适应修复行为及机理[J]. 石油学报, 2021, 42(5): 686-694.

    XU Lin, LIU Shujie, XU Mingbiao, et al. Self-adaptive repair behavior and mechanism of micro-defects of differential pressure activated sealant[J]. Acta Petrolei Sinica, 2021, 42(5): 686-694.
    [8] XU L, WU S Q, XU M B, et al. Insights into unique in-situ self-adaptive sealing property of pressure-activated sealant in leaks: experimental and numerical investigations on mechanism of liquid-to-solid transformation triggered by differential pressure[J]. Geoenergy Science and Engineering, 2024, 234: 212655. doi: 10.1016/j.geoen.2024.212655
    [9] XIAO F, WANG Z G, SUN M B, et al. Simulation of drop deformation and breakup in supersonic flow[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2417-2424. doi: 10.1016/j.proci.2016.09.016
    [10] HUANG J K, ZHAO X Z, JIANG H. Numerical simulation of the atomization of liquid transverse jet in supersonic airflow[J]. Physics of Fluids, 2021, 33(5): 052114. doi: 10.1063/5.0050520
    [11] LUO Z Y, WANG S Q, HE L, et al. Inertia-dependent dynamics of three-dimensional vesicles and red blood cells in shear flow[J]. Soft Matter, 2013, 9(40): 9651-9660. doi: 10.1039/c3sm51823j
    [12] WOLSKI P, PANCZYK T. Conformational properties of PAMAM dendrimers adsorbed on the gold surface studied by molecular dynamics simulation[J]. The Journal of Physical Chemistry C, 2019, 123(36): 22603-22613. doi: 10.1021/acs.jpcc.9b05752
    [13] TIAN W D, MA Y Q. Theoretical and computational studies of dendrimers as delivery vectors[J]. Chemical Society Reviews, 2013, 42(2): 705-727. doi: 10.1039/C2CS35306G
    [14] KANIA D, YUNUS R, OMAR R, et al. Lubricity performance of non-ionic surfactants in high-solid drilling fluids: A perspective from quantum chemical calculations and filtration properties[J]. Journal of Petroleum Science and Engineering, 2021, 207: 109162. doi: 10.1016/j.petrol.2021.109162
    [15] OKRUGIN B, ILYASH M, MARKELOV D, et al. Lysine dendrigraft nanocontainers. Influence of topology on their size and internal structure[J]. Pharmaceutics, 2018, 10(3): 129. doi: 10.3390/pharmaceutics10030129
    [16] 陈素玲, 潘明强, 田文得. PAMAM树枝形分子与KALP肽相互作用的计算机模拟研究[J]. 高分子学报, 2014(8): 1062-1069.

    CHEN Suling, PAN Mingqiang, TIAN Wende. Computational study of the interaction between PAMAM dendrimer and KALP peptide[J]. Acta Polymerica Sinica, 2014(8): 1062-1069.
    [17] REN H, ZHANG Z, CHENG X, et al. Injectable, self-healing hydrogel adhesives with firm tissue adhesion and on-demand biodegradation for sutureless wound closure[J]. Science Advances, 2023, 9(33): 4327. doi: 10.1126/sciadv.adh4327
    [18] 许林, 许力, 吴舒琪, 等. 微球聚合物强化水基钻井液流变稳定性及其分子模拟研究[J]. 钻井液与完井液, 2023, 40(6): 693-702.

    XU Lin, XU Li, WU Shuqi, et al. Study on polymer microspheres for their action in enhancing rheology stability of drilling fluids through molecular simulation[J]. Drilling Fluid & Completion Fluid, 2023, 40(6): 693-702.
    [19] CAMARADA M B. DFT investigation of the interaction of gold nanoclusters with poly (amidoamine) PAMAM G0 dendrimer[J]. Chemical Physics Letters, 2016, 654: 29-36. doi: 10.1016/j.cplett.2016.05.007
    [20] 许林, 王晓棠, 王晓亮, 等. 超支化高分子水基钻井液仿生润滑机理[J]. 天然气工业, 2024, 44(7): 120-131.

    XU Lin, WANG Xiaotang, WANG Xiaoliang, et al. Bionic lubricating mechanism of water-based drilling fluid with hyperbranched polymer[J]. Natural Gas Industry, 2024, 44(7): 120-131.
    [21] HERSCHLAG D, PINNEY M M. Hydrogen bonds: simple after all?[J]. Biochemistry, 2018, 57(24): 3338-3352. doi: 10.1021/acs.biochem.8b00217
    [22] LU T. A comprehensive electron wavefunction analysis toolbox for chemists, multiwfn[J]. The Journal of Chemical Physics, 2024, 161(8): 082503. doi: 10.1063/5.0216272
    [23] RONG C Y, LU T, LIU S B. Dissecting molecular descriptors into atomic contributions in density functional reactivity theory[J]. The Journal of Chemical Physics, 2014, 140(2): 024109. doi: 10.1063/1.4860969
  • 加载中
图(9)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-17
  • 修回日期:  2025-11-01
  • 录用日期:  2025-11-25
  • 网络出版日期:  2026-02-09
  • 刊出日期:  2026-02-09

目录

    /

    返回文章
    返回

    尊敬的作者、读者:

    您好!

    为更好地服务于广大作者和读者,提升期刊编辑部的办公效率和服务质量,本刊编辑部办公地点及联系电话已进行变更。

    新办公地址:天津经济技术开发区第二大街83号中国石油天津大厦A517房间

    新联系电话:022-65278734

                         022-25275527

    我们衷心希望广大作者和读者能够继续支持我们的工作,共同推动期刊的发展和进步。

    再次感谢您对期刊的关注和支持!