| [1] |
UGARTE E R, SALEHI S. An uncertainty risk evaluation Tool for wellbore leakage prediction for plug and abandonment[C]//the SPE Western Regional Meeting. Anchorage, Alaska, USA: SPE, 2023: SPE-212957-MS.
|
| [2] |
RAHMAN S A A, PANG A L, ARSAD A, et al. The chemistry insight: epoxy sealant as an alternative remedial operation for well integrity[J]. Reviews in Chemical Engineering, 2022, 39(5): 857-873.
|
| [3] |
AL-HOUTI N, AL-OTHMAN M, AL-QASSAR K, et al. An alternative method for cement squeeze in North Kuwait: case study[C]//the SPE/ICoTA Coiled Tubing and Well Intervention Conference and Exhibition. Houston, Texas, USA: SPE, 2017: SPE-184802-MS.
|
| [4] |
蒋孟晨, 许林, 程现华, 等. 压差激活密封剂的制备与应用[J]. 油田化学, 2021, 38(2): 216-222.JIANG Mengchen, XU Lin, CHENG Xianhua, et al. Preparation and application of pressure activated sealant[J]. Oilfield Chemistry, 2021, 38(2): 216-222.
|
| [5] |
幸雪松, 许林, 冯桓榰, 等. 压差激活密封剂的制备、密封性能及机理研究[J]. 钻井液与完井液, 2019, 36(6): 789-794.XING Xuesong, XU Lin, FENG Huanzhi, et al. A differential pressure activated sealant: preparation, sealing performance and working mechanisms[J]. Drilling Fluid & Completion Fluid, 2019, 36(6): 789-794.
|
| [6] |
许林, 蒋孟晨, 许洁, 等. 复合压差激活密封剂的设计及其封堵性能[J]. 天然气工业, 2020, 40(3): 107-114.XU Lin, JIANG Mengchen, XU Jie, et al. Design and plugging property of composite pressure activated sealant[J]. Natural Gas Industry, 2020, 40(3): 107-114.
|
| [7] |
许林, 刘书杰, 许明标, 等. 压差激活密封剂的微缺陷自适应修复行为及机理[J]. 石油学报, 2021, 42(5): 686-694.XU Lin, LIU Shujie, XU Mingbiao, et al. Self-adaptive repair behavior and mechanism of micro-defects of differential pressure activated sealant[J]. Acta Petrolei Sinica, 2021, 42(5): 686-694.
|
| [8] |
XU L, WU S Q, XU M B, et al. Insights into unique in-situ self-adaptive sealing property of pressure-activated sealant in leaks: experimental and numerical investigations on mechanism of liquid-to-solid transformation triggered by differential pressure[J]. Geoenergy Science and Engineering, 2024, 234: 212655. doi: 10.1016/j.geoen.2024.212655
|
| [9] |
XIAO F, WANG Z G, SUN M B, et al. Simulation of drop deformation and breakup in supersonic flow[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2417-2424. doi: 10.1016/j.proci.2016.09.016
|
| [10] |
HUANG J K, ZHAO X Z, JIANG H. Numerical simulation of the atomization of liquid transverse jet in supersonic airflow[J]. Physics of Fluids, 2021, 33(5): 052114. doi: 10.1063/5.0050520
|
| [11] |
LUO Z Y, WANG S Q, HE L, et al. Inertia-dependent dynamics of three-dimensional vesicles and red blood cells in shear flow[J]. Soft Matter, 2013, 9(40): 9651-9660. doi: 10.1039/c3sm51823j
|
| [12] |
WOLSKI P, PANCZYK T. Conformational properties of PAMAM dendrimers adsorbed on the gold surface studied by molecular dynamics simulation[J]. The Journal of Physical Chemistry C, 2019, 123(36): 22603-22613. doi: 10.1021/acs.jpcc.9b05752
|
| [13] |
TIAN W D, MA Y Q. Theoretical and computational studies of dendrimers as delivery vectors[J]. Chemical Society Reviews, 2013, 42(2): 705-727. doi: 10.1039/C2CS35306G
|
| [14] |
KANIA D, YUNUS R, OMAR R, et al. Lubricity performance of non-ionic surfactants in high-solid drilling fluids: A perspective from quantum chemical calculations and filtration properties[J]. Journal of Petroleum Science and Engineering, 2021, 207: 109162. doi: 10.1016/j.petrol.2021.109162
|
| [15] |
OKRUGIN B, ILYASH M, MARKELOV D, et al. Lysine dendrigraft nanocontainers. Influence of topology on their size and internal structure[J]. Pharmaceutics, 2018, 10(3): 129. doi: 10.3390/pharmaceutics10030129
|
| [16] |
陈素玲, 潘明强, 田文得. PAMAM树枝形分子与KALP肽相互作用的计算机模拟研究[J]. 高分子学报, 2014(8): 1062-1069.CHEN Suling, PAN Mingqiang, TIAN Wende. Computational study of the interaction between PAMAM dendrimer and KALP peptide[J]. Acta Polymerica Sinica, 2014(8): 1062-1069.
|
| [17] |
REN H, ZHANG Z, CHENG X, et al. Injectable, self-healing hydrogel adhesives with firm tissue adhesion and on-demand biodegradation for sutureless wound closure[J]. Science Advances, 2023, 9(33): 4327. doi: 10.1126/sciadv.adh4327
|
| [18] |
许林, 许力, 吴舒琪, 等. 微球聚合物强化水基钻井液流变稳定性及其分子模拟研究[J]. 钻井液与完井液, 2023, 40(6): 693-702.XU Lin, XU Li, WU Shuqi, et al. Study on polymer microspheres for their action in enhancing rheology stability of drilling fluids through molecular simulation[J]. Drilling Fluid & Completion Fluid, 2023, 40(6): 693-702.
|
| [19] |
CAMARADA M B. DFT investigation of the interaction of gold nanoclusters with poly (amidoamine) PAMAM G0 dendrimer[J]. Chemical Physics Letters, 2016, 654: 29-36. doi: 10.1016/j.cplett.2016.05.007
|
| [20] |
许林, 王晓棠, 王晓亮, 等. 超支化高分子水基钻井液仿生润滑机理[J]. 天然气工业, 2024, 44(7): 120-131.XU Lin, WANG Xiaotang, WANG Xiaoliang, et al. Bionic lubricating mechanism of water-based drilling fluid with hyperbranched polymer[J]. Natural Gas Industry, 2024, 44(7): 120-131.
|
| [21] |
HERSCHLAG D, PINNEY M M. Hydrogen bonds: simple after all?[J]. Biochemistry, 2018, 57(24): 3338-3352. doi: 10.1021/acs.biochem.8b00217
|
| [22] |
LU T. A comprehensive electron wavefunction analysis toolbox for chemists, multiwfn[J]. The Journal of Chemical Physics, 2024, 161(8): 082503. doi: 10.1063/5.0216272
|
| [23] |
RONG C Y, LU T, LIU S B. Dissecting molecular descriptors into atomic contributions in density functional reactivity theory[J]. The Journal of Chemical Physics, 2014, 140(2): 024109. doi: 10.1063/1.4860969
|