A High Efficiency Low Damage Fracturing Fluid for Deep Coalbed Methane Development
-
摘要: 为解决开采深部煤层气现有压裂液体系的携砂性差和岩心伤害率高等缺陷。利用超分子聚合物化学原理,并设计和制备出适用于深部煤层气开采的压裂液主剂,通过与表面活性剂物理交联构建出兼具高携砂、低伤害的压裂液体系(HMP/OP),并对其减阻性能、携砂性能、破胶性、岩心伤害性和吸附/解析性能进行测试。结果表明:HMP/OP体系具有高减阻(73%)的特性;在100℃,砂比为20%的条件下,HMP/OP体系的携砂时间和沉降速率分别为110 min和0.8 cm/min;在80℃下,破胶2 h后破胶液黏度和残渣含量分别为4.63 mPa·s和353.12 mg/L;HMP/OP体系的破胶液对岩心的伤害率仅为17.44%。此外,HMP/OP体系在煤岩表面的吸附量仅为0.32 mg/g。在HMP/OP体系中加入0.2 %的促解吸剂(SH-12)后,破胶液对甲烷的解吸量高达1.72 mL/g。基于此,通过物理交联制得HMP/OP体系实现了压裂液的高携砂、低伤害、低吸附和强化甲烷解吸功能,适配煤层气高效开发的工程技术需求。Abstract: In developing deep coalbed methane (CBM), existing fracturing fluids have deficiencies such as poor sand carrying capacity and high core damage. To overcome these deficiencies, a fracturing fluid system (HMP/OP) was developed with a main fracturing fluid agent designed and developed based on principles of supramolecular polymer chemistry. This main agent is used for deep CBM production and is physically crosslinked with surfactants to formulate the HMP/OP fracturing fluid with high sand carrying capacity and low formation damage. Laboratory experiments on its drag reducing performance, sand carry capacity, gel breaking capacity, core damage potential as well as adsorption/desorption capacity show that HMP/OP can significantly reduce flow drag (by 73%). At 100℃ and 20% sand content, the time for the sand to be suspended by the HMP/OP fracturing fluid is 110 min, and the settling rate of sand is 0.8 cm/min. At 80℃, after gel breaking for 2 hours, the viscosity and the residue content of the fluid are 4.63 mPa·s and 353.12 mg/L, respectively. The percent core damage caused by the HMP/OP fluid after gel breaking is only 17.44%. Moreover, the adsorption capacity of HMP/OP on the surfaces of coal rocks is only 0.32 mg/g. Adding 0.2% desorption agent (SH-12) into the HMP/OP fluid, 1.72 mL/g methane can be separated from the fluid after gel breaking. The fracturing fluid HMP/OP, developed through physical crosslinking, possesses high sand ratio, low formation damage, low adsorption capacity and enhanced methane desorption capacities, satisfying the engineering technical requirements of efficient development of coalbed methane.
-
表 1 压裂液主剂结构的优化
m(AM)∶m(AMPS) η/
mPa·s单体
含量/%η/
mPa·sAPO/
%η/
mPa·s9.5∶0.5 60 15 24 0.10 33 9∶1 63 20 33 0.15 45 8.5∶1.5 54 25 63 0.20 63 8∶2 48 30 60 0.25 63 7.5∶2.5 39 35 54 0.30 57 表 2 不同压裂液体系的破胶实验结果(APS浓度为0.1%)
压裂液体系 破胶条件 η破胶液/mPa·s 残渣含量/(mg·L−1) HMP 60℃、2 h 7.34 739.45 80℃、2 h 3.68 336.33 100℃、2 h 2.87 174.36 HMP/OP 60℃、2 h 7.36 638.92 80℃、2 h 4.63 353.12 100℃、2 h 3.15 214.35 表 3 不同压裂液体系破胶液的岩心伤害性评价结果
体系(破胶液) K0/mD Kd/ mD 伤害性/% HMP 0.568 0.475 16.34 HMP/OP 0.612 0.505 17.44 HPG 1.852 1.270 31.45 -
[1] 李树国, 唱永磊, 汪大林, 等. 深层煤层气开发压裂返排液处理工艺技术研究[J]. 给水排水, 2025, 51(2): 87-91.LI Shuguo, CHANG Yonglei, WANG Dalin, et al. Research on treatment technology and process for fracturing flowback fluid in deep coalbed methane development[J]. Water & Wastewater Engineering, 2025, 51(2): 87-91. [2] 管保山, 刘玉婷, 刘萍, 等. 煤层气压裂液研究现状与发展[J]. 煤炭科学技术, 2016, 44(5): 11-17,22.GUAN Baoshan, LIU Yuting, LIU Ping, et al. Present situation and development of coalbed methane fracturing fluid[J]. Coal Science and Technology, 2016, 44(5): 11-17,22. [3] KANG W L, ZHOU B B, ISSAKHOV M, et al. Advances in enhanced oil recovery technologies for low permeability reservoirs[J]. Petroleum Science, 2022, 19(4): 1622-1640. doi: 10.1016/j.petsci.2022.06.010 [4] ZHAO T B, QIN Q R. Characterization methods for current in-situ stress in oil and gas reservoirs: a mini review[J]. Frontiers in Earth Science, 2023, 11: 1276807. doi: 10.3389/feart.2023.1276807 [5] 陈昊, 毕凯琳, 张军, 等. 非常规油气开采压裂用减阻剂研究进展[J]. 油田化学, 2021, 38(2): 347-359.CHEN Hao, BI Kailin, ZHANG Jun, et al. Progress of drag reducers used in slickwater hydrofracturing of unconventional hydrocarbons[J]. Oilfield Chemistry, 2021, 38(2): 347-359. [6] 郭建春, 任山, 唐朝钧, 等. 一体化变黏抗盐降阻剂的研制及应用[J]. 石油与天然气化工, 2022, 51(5): 80-86.GUO Jianchun, REN Shan, TANG Zhaojun, et al. Development and application of an integrated variable viscosity and anti-salt drag reducing agent[J]. Chemical Engineering of Oil and Gas, 2022, 51(5): 80-86. [7] 王博, 张翼, 李华山, 等. 新疆阜康区块煤层气压裂液评价及伤害机理研究[J]. 内蒙古煤炭经济, 2021(17): 35-36.WANG Bo, ZHANG Yi, LI Huashan, et al. Research on the evaluation and damage mechanism of coalbed methane fracturing fluid in Fukang block, Xinjiang[J]. Inner Mongolia Coal Economy, 2021(17): 35-36. [8] 周睿, 江厚顺, 简霖, 等. 煤层气压裂液伤害对比实验研究[J]. 当代化工, 2017, 46(10): 2153-2155,2173.ZHOU Rui, JIANG Houshun, JIAN Lin, et al. Experimental study on damage of coalbed gas fracturing fluid[J]. Contemporary Chemical Industry, 2017, 46(10): 2153-2155,2173. [9] 张永成, 刘亮亮, 李德慧, 等. 深部煤层气藏低伤害胍胶压裂液评价与应用[J]. 煤矿安全, 2024, 55(9): 71-77.ZHANG Yongcheng, LIU Liangliang, LI Dehui, et al. Evaluation and application of low damage guar gum fracturing fluid in deep coalbed methane reservoirs[J]. Safety in Coal Mines, 2024, 55(9): 71-77. [10] 田跃儒, 张双双, 郑晓斌. 柳林区块煤层气压裂液评价及伤害机理研究[J]. 煤炭技术, 2021, 40(5): 69-71.TIAN Yueru, ZHANG Shuangshuang, ZHENG Xiaobin. Study on evaluation and damage mechanism of coal-bed methane of fracturing fluid in Liulin block[J]. Coal Technology, 2021, 40(5): 69-71. [11] YANG H B, PAN S L, JIANG H Z, et al. Study of a high salt tolerant amphiphilic polymer and its salt thickening mechanism[J]. Journal of Molecular Liquids, 2024, 400: 124552. doi: 10.1016/j.molliq.2024.124552 [12] AHMED M E, SULTAN A S, AL-SOFI A, et al. Optimization of surfactant-polymer flooding for enhanced oil recovery[J]. Journal of Petroleum Exploration and Production Technology, 2023, 13(10): 2109-2123. doi: 10.1007/s13202-023-01651-0 [13] TAVAKKOLI O, KAMYAB H, SHARIATI M, et al. Effect of nanoparticles on the performance of polymer/surfactant flooding for enhanced oil recovery: a review[J]. Fuel, 2022, 312: 122867. doi: 10.1016/j.fuel.2021.122867 [14] LI Z, KANG W, YANG H B, et al. Advances of supramolecular interaction systems for improved oil recovery(IOR)[J]. Advances in Colloid and Interface Science, 2022, 301: 102617. doi: 10.1016/j.cis.2022.102617 [15] WANG Z P, GE Z L, LI R H, et al. Coupling effect of temperature, gas, and viscoelastic surfactant fracturing fluid on the microstructure and its fractal characteristics of deep coal[J]. Energy & Fuels, 2021, 35(23): 19423-19436. [16] ZHANG Q, CAI F, XIE H T, et al. Effects of clean fracturing fluids on coal microstructure and coalbed gas adsorption[J]. Scientific Reports, 2024, 14(1): 20428. doi: 10.1038/s41598-024-71371-w -
下载: