Synthesis and Performance Evaluation of Multifunctional Drilling Fluid Additive MPA-1
-
摘要: 针对目前水基钻井液处理剂种类多、处理剂主功能突出而副功能效果不理想,多数钻井液体系复杂、维护难度较大、处理剂间易出现配伍性差等问题,提出多功能钻井液处理剂的研发思路。通过L9(34)正交实验确定了合成单体、最优加量和反应条件,室内合成出具有降滤失、抑制和润滑3种功效的多功能钻井液处理剂MPA-1,数均和重均分子量分别为15.6万和28.2万,热重分析显示MPA-1分子初始分解温度约为255℃。在5%钠膨润土浆中,与现场常用单一功能处理剂相比,含1%MPA-1的实验浆经120℃老化16 h后降滤失、润滑和抑制效果突出,经150℃老化16 h后性能优于多数现场常用处理剂。在含5%~10%KCl的5%钠膨润土浆中,MPA-1表现出良好的耐盐能力。在3口现场钾胺基/钾基聚磺井浆中分别加入0.3%~0.5%MPA-1,经120℃老化16 h后,井浆黏度适度升高、API滤失量明显降低,滤饼润滑性能得到改善。使用1.5%MPA-1代替实际钾胺基钻井液中的1%KPAM+1%Lube-3+1%SMJA-1后,配方得到简化,滤失量、黏度、黏滞系数和膨润土压片的相对膨胀率全面降低。机理分析表明,MPA-1中的阳离子基团,通过吸附在黏土颗粒表面适度提高其疏水性,起到抑制作用,同时提高润滑性能。MPA-1中的阴离子基团进入黏土颗粒的水化层,增强了颗粒表面电负性,增加了水化膜厚度,结合主链包覆作用增大了颗粒的粒径分布范围,进而有助于形成更加薄和致密的滤饼,降低滤失量。研究结果表明,研制的多功能钻井液处理剂MPA-1的降滤失性、润滑性和抑制性能满足150℃以内地层钻进需要,有利于简化钻井液体系,降低现场维护处理难度。Abstract: This study presents an idea of developing multifunctional drilling fluid additives to deal with the problems encountered in field drilling fluid engineering, such as too many kinds of drilling fluid additives, drilling fluid additives with their main function being prominent and secondary functions being unsatisfactory, as well as many drilling fluids with complex compositions, difficulties in property maintenance and poor compatibility among the additives. A multifunctional drilling fluid additive MPA-1 with three functions, which are filtration reduction, shale inhibition and lubricity improvement, was developed through L9(34) orthogonal experiment with which the monomers and their optimal concentrations, and the optimal reaction conditions were determined. The number average molecular weight and the weight average molecular weight of MPA-1 are 15.6×104 and 28.2×104, respectively. TGA results show that the initial decomposition temperature of the MPA-1 molecules is about 255℃. Compared with many other commonly used single-function additives, 1%MPA-1 in a 5% sodium bentonite slurry exhibits better performance in filtration control, lubrication and shale inhibition after the slurry is aged at 120℃ for 16 h. In 5% sodium bentonite slurry containing 5%-10%KCl, MPA-1 exhibits good salt resistance. When three samples of a potassium amine/potassium polymer sulfonate drilling fluid, which was used to drill 3 wells, were treated with 0.3%-0.5%MPA-1 and then allowed to age at 120℃ for 16 h, the viscosity of the samples increased moderately, the API filtration rate decreased significantly, and the lubricity of the mud cakes was improved. Replacing the 1%KPAM+1%Lube-3+1%SMJA-1 in the field potassium amine drilling fluid with 1.5%MPA-1, the composition of the drilling fluid was simplified, and the filtration rate, viscosity, viscosity coefficient of the drilling fluid, as well as the relative rate of expansion of bentonite pallets were wholly reduced. Mechanism analysis shows that the cationic groups in MPA-1 molecules moderately improve the hydrophobicity of clay particles by adsorbing on their surfaces, thereby inhibiting the clay particles and improving the lubricity of the drilling fluid at the same time. The anionic groups in the MPA-1 molecules, on the other hand, enter the hydration layer of clay particles, thereby enhancing the electronegativity of the clay particle surfaces, and increasing the thickness of the hydration films. These effects, together with the encapsulating effect of the main chains of the MPA-1 molecules, enlarge the range of the particle size distribution of the clay particles, which in turn helps produce thinner and denser mud cakes, reducing the filtration rate of the drilling fluid. The results of the research indicate that the multifunctional drilling fluid additive MPA-1 has the ability to reduce filtration rate, enhance lubricity and improve shale inhibition which satisfy the requirements of drilling a well with bottomhole temperatures less than 150℃, and this is beneficial to simplifying mud composition and reducing the difficulties in the maintenance and treatment of a drilling fluid in field operation.
-
Key words:
- Multifunction /
- Additive /
- Filtration control /
- Lubrication /
- Inhibition
-
表 1 磺酸单体考察结果
产物 单体物质
的量比AV/
mPa·sFLAPI/
mLFLHTHP/
mL黏滞
系数1 A∶B∶C 10.0 7.8 20.0 0.0262 2 A∶B∶D 10.5 6.0 41.6 0.0349 注:FLHTHP在120℃测定。 表 2 阳离子单体考察结果
产物 单体物质
的量比AV/
mPa·sFLAPI/
mLFLHTHP/
mL黏滞
系数泥岩相对
膨胀率/%1 A∶B∶C∶E 18.0 6.4 20.4 0.0262 60.67 2 A∶B∶C∶F 7.5 6.6 17.6 0.0349 48.39 3 A∶B∶C∶G 11.5 18.0 49.6 0.1405 75.60 注:FLHTHP在120℃测定。 表 3 MPA-1分子量测试结果
峰 数均分子量(Mn) 重均分子量(Mw) 占比/% Peak1 156 103 282 291 99.13 Peak2 1730 1788 0.87 表 4 在钠膨润土浆中加入MPA-1前后的耐温性能
MPA-1/
%实验
条件AV/
mPa·sFLAPI/
mL黏滞
系数膨润土压片
相对膨胀率/%0 120℃、16 h 7.0 26.2 0.2035 73.68 1 120℃、16 h 15.5 6.0 0.0262 46.77 140℃、16 h 15.0 6.4 0.0437 48.59 150℃、16 h 11.0 8.8 0.1317 59.30 注:膨胀率实验在对应配方去掉钠膨润土后的浆液中进行,取第20 h对应的膨胀率值。 表 5 在5%钠膨润土浆中加入不同处理剂的性能
配方 AV/
mPa·sFLAPI/
mL黏滞
系数0 7.0 26.2 0.2035 5%KCl 4.0 202.0 0.2126 5%KCl+1%MPA-1 13.5 8.8 0.0437 5%KCl+1%FLA-1 16.5 16.6 0.1139 5%KCl+1%FLA-8 6.0 27.0 0.1317 5%KCl+1%Lube-4 12.0 172.0 0.1405 10%KCl 3.5 250.0 0.2867 10%KCl+1%MPA-1 11.5 14.2 0.1139 10%KCl+1%FLA-1 8.0 44.0 0.1051 10%KCl+1%FLA-8 4.5 87.2 0.1853 表 6 MPA-1与现场井浆的配伍性(120℃、16 h)
钻井液 Cl−/(mg·L−1) K+/(mg·L−1) MPA-1/% 实验条件 FLAPI/mL FLHTHP/mL AV/mPa·s PV/mPa·s 黏滞系数 钾胺基聚磺
(A井6347 m井浆)24 600 12 400 0 老化前 4.0 11.8 28.0 18.5 0.0524 0.5 120℃、16 h 2.2 7.8 43.0 23.0 0.0349 钾基聚磺
(B井7911 m井浆)28 500 10 400 0 老化前 2.4 9.6 20.5 16.0 0.0699 0.3 120℃、16 h 1.6 8.6 32.5 21.0 0.0524 钾基聚磺
(C井7819 m井浆)25 915 11 680 0 老化前 3.0 19.5 11.0 0.0699 0.5 120℃、16 h 1.6 27.5 20.0 0.0612 表 7 MPA-1简化钾胺基聚磺钻井液配方实验结果
配方 实验条件 ρ/(g·cm−3) FLAPI/mL FLHTHP/mL AV/mPa·s PV/mPa·s 黏滞系数 膨润土压片相对膨胀率/% A井 老化前 1.37 31 20 120℃、16 h 1.37 3.6 11.6 25 16 0.0524 58.61 简化 老化前 1.37 29 17 120℃、16 h 1.37 1.8 6.8 24 14 0.0262 42.35 注:膨胀率实验在对应配方去掉钠土后的浆液中进行,取第20 h对应的膨胀率值。 -
[1] 王中华. 国内钻井液处理剂研究进展、现状分析与发展建议[J]. 钻井液与完井液, 2025, 42(1): 1-19.WANG Zhonghua. Research progress, current situation analysis and development suggestions of drilling fluid treatment agents in China[J]. Drilling Fluid & Completion Fluid, 2025, 42(1): 1-19. [2] 邢林庄, 袁玥辉, 叶成, 等. 抗高温抗复合盐支链型聚合物降滤失剂的合成及其性能[J]. 钻井液与完井液, 2023, 40(6): 703-710.XING Linzhuang, YUAN Yuehui, YE Cheng, et al. Synthesis and evaluation of a high temperature salt-resistant chain polymer filter loss reducer[J]. Drilling Fluid & Completion Fluid, 2023, 40(6): 703-710. [3] 郑斌. 抗高温环保型降滤失剂低聚糖接枝物的合成与应用[J]. 钻井液与完井液, 2023, 40(3): 313-318.ZHENG Bin. The synthesis and application of an environmentally friendly high temperature graft oligosaccharide filter loss reducer[J]. Drilling Fluid & Completion Fluid, 2023, 40(3): 313-318. [4] 李琼. 钻井液用抗温抗盐润滑降滤失剂研究[J]. 能源化工, 2020, 41(4): 55-60.LI Qiong. Study on temperature resistance and salt resistance lubricating filtrate loss reducer for drilling fluid[J]. Energy Chemical Industry, 2020, 41(4): 55-60. [5] 邱春阳, 马勇, 李萍, 等. 聚胺复合盐润滑防塌钻井液在樊斜166大位移井的应用[J]. 天然气勘探与开发, 2024, 47(3): 63-69.QIU Chunyang, MA Yong, LI Ping, et al. Polyamine composite-salt drilling fluid with lubrication and anti-collapse performance and its application to extended-reach Fanxie-166 well[J]. Natural Gas Exploration and Development, 2024, 47(3): 63-69. [6] 沈伟. 大位移井钻井液润滑性研究的现状与思考[J]. 石油钻探技术, 2001, 29(1): 25-28.SHEN Wei. The status and thinkings of the study on drilling fluid lubricity for long extended wells[J]. Petroleum Drilling Techniques, 2001, 29(1): 25-28 [7] Dong Xiaoqiang, Wang Lin, Yang Xiaohua, et al. Effect of ester based lubricant SMJH-1 on the lubricity properties of water based drilling fluid[J]. Journal of Petroleum Science & Engineering, 2015, 135: 161-167 [8] 张宇. 四元共聚物降滤失剂DMAZ的合成与性能评价[J]. 西部探矿工程, 2017, 29(3): 38-40,45.ZHANG Yu. Synthesis and performance evaluation of tetracopolymer fluid loss additive DMAZ[J]. West-China Exploration Engineering, 2017, 29(3): 38-40,45 [9] 刘大海, 张元, 段春兰, 等. 钻井液降滤失剂KJC的合成[J]. 石油与天然气化工, 2014, 43(5): 543-546.LIU Dahai, ZHANG Yuan, DUAN Chunlan, et al. Synthesis of drilling fluid loss agent KJC[J]. Chemical Engineering Of Oil & Gas, 2014, 43(5): 543-546. [10] 马喜平, 朱忠祥, 侯代勇, 等. 抗高温钻井液降滤失剂的评价及其作用机理[J]. 石油化工, 2016, 45(4): 453-460.MA Xiping, ZHU Zhongxiang, HOU Daiyong, et al. Evaluation and action mechanism of heat-resistant filtrate reducer-PAASD used indrilling fluids[J]. Petrochemical Technology, 2016, 45(4): 453-460 [11] 王中华. 2022~2023年国内钻井液处理剂研究进展[J]. 中外能源, 2024, 29(6): 39-51.Wang Zhonghua. Research progress of drilling fluid treatment agents in China from 2022 to 2023[J]. Sino-global Energy, 2024, 29(6): 39-51 [12] 乔孟占, 李晓岚, 何水良, 等. 抗高温抗盐降滤失剂JRJTS的研制[J]. 油田化学, 2012, 29(4): 385-389.QIAO Mengzhan, LI Xiaolan, HE Shuiliang, et al. Development of a High-Temperature and salt-tolerant filtration additive JRJTS[J]. Oilfield Chemistry, 2012, 29(4): 385-389. [13] 倪文学, 梁大川, 史兰渠. 钻井液用强抑制剂JT900研制及应用[J]. 西安石油学院学报: 自然科学版, 1994(S1): 46-51,67.NI Wenxue, LIANG Dachuan, SHI Lanqu. Development and application of strong inhibitor JT900 for drilling fluid[J]. Journal of Xi'an Petroleum Institute, 1994(S1): 46-51,67. [14] 李娟, 王中华, 胡群爱. 水溶性两性聚合物的研究及其在油田开发中的应用[J]. 油田化学, 2011, 28(2): 229-235.LI Juan, WANG Zhonghua, HU Qunai. Application progress of Water-Soluble amphoteric polymers in oil field development[J]. Oilfield Chemistry, 2011, 28(2): 229-235. [15] 徐雄立. AM-DMDAAC共聚物的合成[J]. 合成化学, 2003, 11(6): 509-512.XU Xiongli. Synthesis of AM-DMDAAC copolymer[J]. Chinese Journal of Synthetic Chemistry, 2003, 11(6): 509-512. -
下载: