Experimental Study on Lost Circulation Control with Particle-Gel Composite Plugging on a Novel Dynamic Circulating Lost Circulation Device
-
摘要: 针对现有堵漏实验装置在动态循环模拟与堵漏浆性能评价方面的局限性,研制了一种集成非均质迂曲裂缝模拟、温压耦合调控与实时监测功能的多参数动态堵漏实验装置。该装置由控温控压反应釜((0~150℃)/(0~25 MPa))、工作液合成系统、液压动力系统、循环泵组及数据采集控制系统构成,可重构50~60 cm迂曲裂缝,模拟动态循环条件下堵漏材料的迁移-封堵交互过程。利用预制的非均质人造岩心和网状金属骨架,开展多尺寸天然裂缝和筑巢骨架堵漏实验,揭示了颗粒-凝胶复合体系的协同作用机制。实验表明,基于D90规则的堵漏浆体系通过“粗架桥-细填充-凝胶补隙”过程,实现悬浮稳定性与封堵能力的协同提升,封堵层承压达12 MPa以上;凝胶预注固化可显著缩短循环时间,单裂缝封堵时间缩短至4 min,较单颗粒体系效率提升45%以上,金属骨架场景下进一步降至2.7 min。该研究验证了动态循环下复合堵漏时序协同的工程适用性,可为裂缝-溶洞型漏失防治提供理论支撑。Abstract: Experimental devices currently in use for lost circulation control test have such shortages in simulating dynamic circulation and evaluating the performance of lost circulation slurries. To overcome these shortages, a multiparameter dynamic lost circulation control experimental device was developed which integrates heterogeneous tortuous fracture simulation, temperature-pressure coupling control and real-time monitor functions. This device consists of a temperature-pressure controlled reactor (0-150℃)/(0-25 MPa), a work fluid synthesis system, a circulation pump set and a data acquisition and control system. It can be used to reconstruct tortuous fractures with lengths of 50-60 cm, and simulate the alternate migration-plugging process of lost circulation materials under dynamic circulation conditions. Using prefabricated heterogeneous artificial cores and reticulate metal frameworks, experiments were conducted on controlling lost circulation in multiscale fractures and nested frameworks, and the synergistic mechanism of the particle-gel composite system was revealed. Experimental results show that the lost circulation control slurry formulated based on the D90 rule achieves a coordinated improvement of suspension stability and plugging capacity through the “coarse particle bridging-fine particle filling – gel gap plugging” process, with the pressure bearing capacity of the plugging layer being over 12 MPa. The curing of the preinjected gel can significantly shorten the circulation time: the time for plugging a single fracture is shortened to 4 min, a plugging efficiency of at least 45% higher than plugging with single-particle lost circulation slurries, and this time is further reduced to 2.7 min when metal frameworks are used. This study has verified the engineering applicability of time-sequential synergistic process of lost circulation control with composite slurries under dynamic circulation conditions, providing theoretical support for the prevention and control of lost circulation in fractured-vuggy formations.
-
表 1 4种堵漏配方材料的颗粒粒径
颗粒种类 粒径/mm 颗粒种类 粒径/mm 陶瓷 8.0 橄榄壳 5.0~6.5 核桃壳1 2.0~4.0 核桃壳2 1.0~2.0 凝胶颗粒 1.0~2.0 云母片 1.0~1.5 石英砂 0.6 棕丝 2.0~4.0 表 2 4种堵漏配方的颗粒体系设计
配方 颗粒种类 6# 10%陶瓷+50%橄榄壳+5%核桃壳1+
30%石英砂+1.4%凝胶+3.6%棕丝7# 10%陶瓷+50%核桃壳1+30%石英砂+
6.4%凝胶+3.6%棕丝8# 10%陶瓷+30%核桃壳2+50%云母片+
6.4%凝胶+3.6%棕丝9# 10%陶瓷+50%核桃壳1+30%云母片+
6.4%凝胶+3.6%棕丝表 3 筑巢骨架不同堵漏方式效果对比
堵漏
方式承压
方向实验
条件封堵时间/
min承压/
MPa颗粒封堵 轴向 10×20 mm
25℃40.0 0.828 颗粒-凝胶协同 2.7 6.391 -
[1] 苏义脑, 路保平, 刘岩生, 等. 中国陆上深井超深井钻完井技术现状及攻关建议[J]. 石油钻采工艺, 2020, 42(5): 527-542.SU Yinao, LU Baoping, LIU Yansheng, et al. Status and research suggestions on the drilling and completion technologies for onshore deep and ultra deep wells in China[J]. Oil Drilling & Production Technology, 2020, 42(5): 527-542. [2] 孙金声, 王建华. 深地塔科1井钻井液技术[J]. 钻井液与完井液, 2025, 42(2): 155-166.SUN Jinsheng, WANG Jianhua. Drilling fluid technology for deep subsurface Tako-1 well[J]. Drilling Fluid & Completion Fluid, 2025, 42(2): 155-166. [3] MASKARY A S, HALIM A, MENHALI A S. Curing loses while drilling & cementing[C]//Paper presented at the Abu Dhabi International Petroleum Exhibition and Conference. Abu Dhabi, 2014: SPE-171910-MS. [4] DUPRIEST F E. Fracture closure stress (FCS) and lost returns practices[C]//SPE/IADC Drilling Conference. Amsterdam, Netherlands, 2005: SPE-92192-MS. [5] 孙金声, 白英睿, 程荣超, 等. 裂缝性恶性井漏地层堵漏技术研究进展与展望[J]. 石油勘探与开发, 2021, 48(3): 630-638.SUN Jinsheng, BAI Yingrui, CHENG Rongchao, et al. Research progress and prospect of plugging technologies for fractured formation with severe lost circulation[J]. Petroleum Exploration and Development, 2021, 48(3): 630-638. [6] 孙金声, 杨景斌, 吕开河, 等. 致密油气钻井液技术研究现状与展望[J]. 石油学报, 2025, 46(1): 279-288.SUN Jinsheng, YANG Jingbin, LYU Kaihe, et al. Research status and prospects of drilling fluid technology for tight oil and gas[J]. Acta Petrolei Sinica, 2025, 46(1): 279-288. [7] 暴丹. 裂缝地层致密承压封堵机理与钻井液堵漏技术研究[D]. 青岛: 中国石油大学(华东), 2020.BAO Dan. Study on tight sealing mechanism with high pressure bearing capacity and drilling fluid plugging technology in fractured formation[D]. Qingdao: China University of Petroleum(East China), 2020. [8] 黄宁, 孙金声, 刘敬平, 等. 水基钻井液封堵理论和材料研究现状及发展趋势[J]. 化工进展, 2025, 44(1): 367-378.HUANG Ning, SUN Jinsheng, LIU Jingping, et al. Research status and development trend of plugging theory and materials of water-based drilling fluid[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 367-378. [9] 贺垠博, 许杰, 崔国杰, 等. 海上某盆地胶结型防漏堵漏钻井液技术[J]. 钻井液与完井液, 2024, 41(1): 68-75.HE Yinbo, XU Jie, CUI Guojie, et al. Research on cementing and loss prevention drilling fluid technology during drilling in the sea basin[J]. Drilling Fluid & Completion Fluid, 2024, 41(1): 68-75. [10] HOWARD G C, SCOTT P P. An analysis and the control of lost circulation[J]. Journal of Petroleum Technology, 1951, 3(6): 171-182. doi: 10.2118/951171-G [11] VAN OORT E, FRIEDHEIM J, PIERCE T, et al. Avoiding losses in depleted and weak zones by constantly strengthening wellbores[J]. SPE Drilling & Completion, 2011, 26(4): 519-530. [12] SANDERS W, YOUNG S, FRIDHEIM J, et al. Development and testing of novel additives for improved wellbore stability and reduced losses[C]//AADE fluids conference and exhibition, AADE-08-DF-HO-19, 2008. [13] NASIRI A, GHAFFARKHAH A, KESHAVARZ MORAVEJI M, et al. Experimental and field test analysis of different loss control materials for combating lost circulation in bentonite mud[J]. Journal of Natural Gas Science and Engineering, 2017, 44: 1-8. doi: 10.1016/j.jngse.2017.04.004 [14] JEENNAKORN M, NYGAARD R, NES O M, et al. Testing conditions make a difference when testing LCM[J]. Journal of Natural Gas Science and Engineering, 2017, 46: 375-386. doi: 10.1016/j.jngse.2017.08.003 [15] ALSHUBBAR G, NYGAARD R, JEENNAKORN M. The effect of wellbore circulation on building an LCM bridge at the fracture aperture[J]. Journal of Petroleum Science and Engineering, 2018, 165: 550-556. doi: 10.1016/j.petrol.2018.02.034 [16] 王德玉, 施太和, 卢熙坦. DL-1型堵漏实验装置的研制设计[J]. 西南石油大学学报, 1997, 19(2): 51-54.WANG Deyu, SHI Taihe, LU Xitan. Design of DL-1 device for lost circulation control[J]. Journal of Southwest Petroleum Institute, 1997, 19(2): 51-54. [17] 胡三清. JLX-2动态堵漏试验仪的研制[J]. 石油机械, 2000, 28(6): 13-14.HU Sanqing. Model JLX-2 dynamic loss plugging tester[J]. China Petroleum Machinery, 2000, 28(6): 13-14. [18] 刘金华, 李大奇, 李凡, 等. 活跃水缝洞漏失堵漏模拟评价装置及实验研究[J]. 钻井液与完井液, 2023, 40(2): 169-175.LIU Jinhua, LI Daqi, LI Fan, et al. Simulation device and experimental study on leakage and plugging of active water fracture hole[J]. Drilling Fluid & Completion Fluid, 2023, 40(2): 169-175. [19] 邱正松, 暴丹, 刘均一, 等. 裂缝封堵失稳微观机理及致密承压封堵实验[J]. 石油学报, 2018, 39(5): 587-596.QIU Zhengsong, BAO Dan, LIU Junyi, et al. Microcosmic mechanism of fracture-plugging instability and experimental study on pressure bearing and tight plugging[J]. Acta Petrolei Sinica, 2018, 39(5): 587-596. [20] 吕开河. 钻井工程中井漏预防与堵漏技术研究与应用[D]. 青岛: 中国石油大学(华东), 2007.LYU Kaihe. Study and application of lost circulation resistance and control technology during drilling[D]. Qingdao: China University of Petroleum(East China), 2007. [21] 徐江, 石秉忠, 王海波, 等. 桥塞封堵裂缝性漏失机理研究[J]. 钻井液与完井液, 2014, 31(1): 44-46.XU Jiang, SHI Bingzhong, WANG Haibo, et al. Mechanism study on bridge plugging technology for fractured formation[J]. Drilling Fluid & Completion Fluid, 2014, 31(1): 44-46. [22] 许成元, 钟江城, 朱海峰, 等. 深水盐下钻井液漏失控制配方设计与堵漏策略[J]. 钻井液与完井液, 2025, 42(5): 575-586 .XU Chengyuan, ZHONG Jiangcheng, ZHU Haifeng, et al. Formulation design of drilling fluid loss control and plugging strategies in deepwater subsalt reservoirs[J]. Drilling Fluid & Completion Fluid, 2025, 42(5): 575-586 . [23] 张逸群, 于超, 程光明, 等. 聚能筑巢堵漏用金属割缝管爆炸成形数值模拟及试验研究[J]. 石油钻探技术, 2020, 48(6): 54-60.ZHANG Yiqun, YU Chao, CHENG Guangming, et al. Experimental and numerical study of the explosive forming of slotted metal pipes for energy-gathered nesting plugging[J]. Petroleum Drilling Techniques, 2020, 48(6): 54-60. -
下载: