留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于新型动态循环堵漏装置的颗粒-凝胶复合堵漏实验研究

胡钊文 张逸群 刘晏俊 王薪宇 杨丽丽 刘亚

胡钊文,张逸群,刘晏俊,等. 基于新型动态循环堵漏装置的颗粒-凝胶复合堵漏实验研究[J]. 钻井液与完井液,2026,43(1):18-27 doi: 10.12358/j.issn.1001-5620.2026.01.003
引用本文: 胡钊文,张逸群,刘晏俊,等. 基于新型动态循环堵漏装置的颗粒-凝胶复合堵漏实验研究[J]. 钻井液与完井液,2026,43(1):18-27 doi: 10.12358/j.issn.1001-5620.2026.01.003
HU Zhaowen, ZHANG Yiqun, LIU Yanjun, et al.Experimental study on lost circulation control with particle-gel composite plugging on a novel dynamic circulating lost circulation device[J]. Drilling Fluid & Completion Fluid,2026, 43(1):18-27 doi: 10.12358/j.issn.1001-5620.2026.01.003
Citation: HU Zhaowen, ZHANG Yiqun, LIU Yanjun, et al.Experimental study on lost circulation control with particle-gel composite plugging on a novel dynamic circulating lost circulation device[J]. Drilling Fluid & Completion Fluid,2026, 43(1):18-27 doi: 10.12358/j.issn.1001-5620.2026.01.003

基于新型动态循环堵漏装置的颗粒-凝胶复合堵漏实验研究

doi: 10.12358/j.issn.1001-5620.2026.01.003
基金项目: 国家自然科学基金优秀青年科学基金项目“油气井流体力学与工程”( 52422402)。
详细信息
    作者简介:

    胡钊文,在读博士研究生,1998年生,研究方向为钻井液漏失与控制。 E-mail:hu_zhaowen@163.com

    通讯作者:

    张逸群,教授,博士生导师,主要从事油气井流体力学与工程研究。E-mail:zhangyq@cup.edu.cn

  • 中图分类号: TE282

Experimental Study on Lost Circulation Control with Particle-Gel Composite Plugging on a Novel Dynamic Circulating Lost Circulation Device

  • 摘要: 针对现有堵漏实验装置在动态循环模拟与堵漏浆性能评价方面的局限性,研制了一种集成非均质迂曲裂缝模拟、温压耦合调控与实时监测功能的多参数动态堵漏实验装置。该装置由控温控压反应釜((0~150℃)/(0~25 MPa))、工作液合成系统、液压动力系统、循环泵组及数据采集控制系统构成,可重构50~60 cm迂曲裂缝,模拟动态循环条件下堵漏材料的迁移-封堵交互过程。利用预制的非均质人造岩心和网状金属骨架,开展多尺寸天然裂缝和筑巢骨架堵漏实验,揭示了颗粒-凝胶复合体系的协同作用机制。实验表明,基于D90规则的堵漏浆体系通过“粗架桥-细填充-凝胶补隙”过程,实现悬浮稳定性与封堵能力的协同提升,封堵层承压达12 MPa以上;凝胶预注固化可显著缩短循环时间,单裂缝封堵时间缩短至4 min,较单颗粒体系效率提升45%以上,金属骨架场景下进一步降至2.7 min。该研究验证了动态循环下复合堵漏时序协同的工程适用性,可为裂缝-溶洞型漏失防治提供理论支撑。

     

  • 图  1  动态循环堵漏装置

    图  2  动态堵漏设备仪器部件

    图  3  管线封堵(左)和颗粒悬浮(右)

    图  4  人造岩心及金属骨架

    图  5  堵漏浆体悬浮性能

    图  6  堵漏浆流变参数

    图  7  岩心封堵截面及三维重构

    图  8  4种堵漏配方在不同注入压力下的封堵层压力

    图  9  动态堵漏过程压力监测

    图  10  不同配方下封堵层形成时间

    图  11  凝胶加热前(左)后(右)状态

    图  12  复合堵漏封堵层形成时间

    图  13  不同缝宽在不同注入压力下的封堵层压力

    图  14  筑巢骨架动态循环及 颗粒-凝胶复合堵漏

    表  1  4种堵漏配方材料的颗粒粒径

    颗粒种类 粒径/mm 颗粒种类 粒径/mm
    陶瓷 8.0 橄榄壳 5.0~6.5
    核桃壳1 2.0~4.0 核桃壳2 1.0~2.0
    凝胶颗粒 1.0~2.0 云母片 1.0~1.5
    石英砂 0.6 棕丝 2.0~4.0
    下载: 导出CSV

    表  2  4种堵漏配方的颗粒体系设计

    配方 颗粒种类
    6# 10%陶瓷+50%橄榄壳+5%核桃壳1+
    30%石英砂+1.4%凝胶+3.6%棕丝
    7# 10%陶瓷+50%核桃壳1+30%石英砂+
    6.4%凝胶+3.6%棕丝
    8# 10%陶瓷+30%核桃壳2+50%云母片+
    6.4%凝胶+3.6%棕丝
    9# 10%陶瓷+50%核桃壳1+30%云母片+
    6.4%凝胶+3.6%棕丝
    下载: 导出CSV

    表  3  筑巢骨架不同堵漏方式效果对比

    堵漏
    方式
    承压
    方向
    实验
    条件
    封堵时间/
    min
    承压/
    MPa
    颗粒封堵 轴向 10×20 mm
    25℃
    40.0 0.828
    颗粒-凝胶协同 2.7 6.391
    下载: 导出CSV
  • [1] 苏义脑, 路保平, 刘岩生, 等. 中国陆上深井超深井钻完井技术现状及攻关建议[J]. 石油钻采工艺, 2020, 42(5): 527-542.

    SU Yinao, LU Baoping, LIU Yansheng, et al. Status and research suggestions on the drilling and completion technologies for onshore deep and ultra deep wells in China[J]. Oil Drilling & Production Technology, 2020, 42(5): 527-542.
    [2] 孙金声, 王建华. 深地塔科1井钻井液技术[J]. 钻井液与完井液, 2025, 42(2): 155-166.

    SUN Jinsheng, WANG Jianhua. Drilling fluid technology for deep subsurface Tako-1 well[J]. Drilling Fluid & Completion Fluid, 2025, 42(2): 155-166.
    [3] MASKARY A S, HALIM A, MENHALI A S. Curing loses while drilling & cementing[C]//Paper presented at the Abu Dhabi International Petroleum Exhibition and Conference. Abu Dhabi, 2014: SPE-171910-MS.
    [4] DUPRIEST F E. Fracture closure stress (FCS) and lost returns practices[C]//SPE/IADC Drilling Conference. Amsterdam, Netherlands, 2005: SPE-92192-MS.
    [5] 孙金声, 白英睿, 程荣超, 等. 裂缝性恶性井漏地层堵漏技术研究进展与展望[J]. 石油勘探与开发, 2021, 48(3): 630-638.

    SUN Jinsheng, BAI Yingrui, CHENG Rongchao, et al. Research progress and prospect of plugging technologies for fractured formation with severe lost circulation[J]. Petroleum Exploration and Development, 2021, 48(3): 630-638.
    [6] 孙金声, 杨景斌, 吕开河, 等. 致密油气钻井液技术研究现状与展望[J]. 石油学报, 2025, 46(1): 279-288.

    SUN Jinsheng, YANG Jingbin, LYU Kaihe, et al. Research status and prospects of drilling fluid technology for tight oil and gas[J]. Acta Petrolei Sinica, 2025, 46(1): 279-288.
    [7] 暴丹. 裂缝地层致密承压封堵机理与钻井液堵漏技术研究[D]. 青岛: 中国石油大学(华东), 2020.

    BAO Dan. Study on tight sealing mechanism with high pressure bearing capacity and drilling fluid plugging technology in fractured formation[D]. Qingdao: China University of Petroleum(East China), 2020.
    [8] 黄宁, 孙金声, 刘敬平, 等. 水基钻井液封堵理论和材料研究现状及发展趋势[J]. 化工进展, 2025, 44(1): 367-378.

    HUANG Ning, SUN Jinsheng, LIU Jingping, et al. Research status and development trend of plugging theory and materials of water-based drilling fluid[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 367-378.
    [9] 贺垠博, 许杰, 崔国杰, 等. 海上某盆地胶结型防漏堵漏钻井液技术[J]. 钻井液与完井液, 2024, 41(1): 68-75.

    HE Yinbo, XU Jie, CUI Guojie, et al. Research on cementing and loss prevention drilling fluid technology during drilling in the sea basin[J]. Drilling Fluid & Completion Fluid, 2024, 41(1): 68-75.
    [10] HOWARD G C, SCOTT P P. An analysis and the control of lost circulation[J]. Journal of Petroleum Technology, 1951, 3(6): 171-182. doi: 10.2118/951171-G
    [11] VAN OORT E, FRIEDHEIM J, PIERCE T, et al. Avoiding losses in depleted and weak zones by constantly strengthening wellbores[J]. SPE Drilling & Completion, 2011, 26(4): 519-530.
    [12] SANDERS W, YOUNG S, FRIDHEIM J, et al. Development and testing of novel additives for improved wellbore stability and reduced losses[C]//AADE fluids conference and exhibition, AADE-08-DF-HO-19, 2008.
    [13] NASIRI A, GHAFFARKHAH A, KESHAVARZ MORAVEJI M, et al. Experimental and field test analysis of different loss control materials for combating lost circulation in bentonite mud[J]. Journal of Natural Gas Science and Engineering, 2017, 44: 1-8. doi: 10.1016/j.jngse.2017.04.004
    [14] JEENNAKORN M, NYGAARD R, NES O M, et al. Testing conditions make a difference when testing LCM[J]. Journal of Natural Gas Science and Engineering, 2017, 46: 375-386. doi: 10.1016/j.jngse.2017.08.003
    [15] ALSHUBBAR G, NYGAARD R, JEENNAKORN M. The effect of wellbore circulation on building an LCM bridge at the fracture aperture[J]. Journal of Petroleum Science and Engineering, 2018, 165: 550-556. doi: 10.1016/j.petrol.2018.02.034
    [16] 王德玉, 施太和, 卢熙坦. DL-1型堵漏实验装置的研制设计[J]. 西南石油大学学报, 1997, 19(2): 51-54.

    WANG Deyu, SHI Taihe, LU Xitan. Design of DL-1 device for lost circulation control[J]. Journal of Southwest Petroleum Institute, 1997, 19(2): 51-54.
    [17] 胡三清. JLX-2动态堵漏试验仪的研制[J]. 石油机械, 2000, 28(6): 13-14.

    HU Sanqing. Model JLX-2 dynamic loss plugging tester[J]. China Petroleum Machinery, 2000, 28(6): 13-14.
    [18] 刘金华, 李大奇, 李凡, 等. 活跃水缝洞漏失堵漏模拟评价装置及实验研究[J]. 钻井液与完井液, 2023, 40(2): 169-175.

    LIU Jinhua, LI Daqi, LI Fan, et al. Simulation device and experimental study on leakage and plugging of active water fracture hole[J]. Drilling Fluid & Completion Fluid, 2023, 40(2): 169-175.
    [19] 邱正松, 暴丹, 刘均一, 等. 裂缝封堵失稳微观机理及致密承压封堵实验[J]. 石油学报, 2018, 39(5): 587-596.

    QIU Zhengsong, BAO Dan, LIU Junyi, et al. Microcosmic mechanism of fracture-plugging instability and experimental study on pressure bearing and tight plugging[J]. Acta Petrolei Sinica, 2018, 39(5): 587-596.
    [20] 吕开河. 钻井工程中井漏预防与堵漏技术研究与应用[D]. 青岛: 中国石油大学(华东), 2007.

    LYU Kaihe. Study and application of lost circulation resistance and control technology during drilling[D]. Qingdao: China University of Petroleum(East China), 2007.
    [21] 徐江, 石秉忠, 王海波, 等. 桥塞封堵裂缝性漏失机理研究[J]. 钻井液与完井液, 2014, 31(1): 44-46.

    XU Jiang, SHI Bingzhong, WANG Haibo, et al. Mechanism study on bridge plugging technology for fractured formation[J]. Drilling Fluid & Completion Fluid, 2014, 31(1): 44-46.
    [22] 许成元, 钟江城, 朱海峰, 等. 深水盐下钻井液漏失控制配方设计与堵漏策略[J]. 钻井液与完井液, 2025, 42(5): 575-586 .

    XU Chengyuan, ZHONG Jiangcheng, ZHU Haifeng, et al. Formulation design of drilling fluid loss control and plugging strategies in deepwater subsalt reservoirs[J]. Drilling Fluid & Completion Fluid, 2025, 42(5): 575-586 .
    [23] 张逸群, 于超, 程光明, 等. 聚能筑巢堵漏用金属割缝管爆炸成形数值模拟及试验研究[J]. 石油钻探技术, 2020, 48(6): 54-60.

    ZHANG Yiqun, YU Chao, CHENG Guangming, et al. Experimental and numerical study of the explosive forming of slotted metal pipes for energy-gathered nesting plugging[J]. Petroleum Drilling Techniques, 2020, 48(6): 54-60.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-17
  • 修回日期:  2025-10-07
  • 网络出版日期:  2026-02-09
  • 刊出日期:  2026-02-09

目录

    /

    返回文章
    返回

    尊敬的作者、读者:

    您好!

    为更好地服务于广大作者和读者,提升期刊编辑部的办公效率和服务质量,本刊编辑部办公地点及联系电话已进行变更。

    新办公地址:天津经济技术开发区第二大街83号中国石油天津大厦A517房间

    新联系电话:022-65278734

                         022-25275527

    我们衷心希望广大作者和读者能够继续支持我们的工作,共同推动期刊的发展和进步。

    再次感谢您对期刊的关注和支持!