Simulation Research on Friction Characteristics of Borehole Wall Fracture Surfaces and Structural Instability in Maokou Carbonate Formation in Southern Sichuan
-
摘要: 为揭示川南地区茅口组碳酸盐岩地层井壁失稳机制,针对该地层系统性地开展了裂缝面摩擦特性测试与离散元数值模拟研究。现场数据分析证实,井壁失稳主要发生在茅口组地层裂缝发育、岩体破碎地带,钻遇该层位后井壁掉块频发,局部扩径严重,威胁钻井安全。实验研究表明:茅口组灰岩中天然/人工裂缝面的摩擦系数分别为0.691~0.743和0.501~0.588;钻井液作用后,受到流体对裂缝面力学强度的弱化和润滑作用,裂缝面摩擦系数平均降幅16.9%~31.8%;高应力条件下由于裂缝面微凸体的软化与破坏,部分充填裂缝的摩擦系数可降至0.2~0.3;采用离散元方法进行含复杂结构面的茅口组井眼井壁失稳模拟发现,当裂缝走向与最大水平主应力夹角为45°~60°时,井周裂缝最易被激活;裂缝面摩擦系数降低显著增加岩体剪切滑移风险,诱发井壁掉块与扩径等失稳现象。基于以上认识,针对基质强度高、天然裂缝发育的碳酸盐岩地层,准确评价天然裂缝的摩擦强度,使用强封堵防塌钻井液体系,可有效封堵裂缝、抑制润滑效应,提升裂缝面摩擦强度,从而保证井壁稳定与钻井安全。Abstract: To reveal the mechanisms of borehole wall instability occurred in drilling the Maokou carbonate formation in southern Sichuan province, systematic testing and discrete element numerical simulation were conducted on the friction characteristics of the surfaces of the fractures in the formation. Field data analysis confirms that borehole wall instability mainly takes place in the broken rocks in the Maokou formation in which fractures are developed. When drilling into this formation, caving and sloughing of the formation rocks frequently take place and serious local wash-out leads to enlarged holes, posing a threat to safety of drilling operation. Experimental results show that in the limestones of the Maokou formation, the surfaces of the natural/artificial fractures have coefficients of friction (COFs) ranging in 0.691-0.743 and 0.501-0.588. After contacting with the drilling fluid, the mechanical strengths of the surfaces of the fractures are reduced and the surfaces are also lubricated by the fluid, the COFs of the surfaces of the fractures are reduced by 16.9%-31.8% in average. In high stress condition, the micro convex spots on the surfaces of the fractures become softened and damaged, the COFs of some filled fractures can be reduced to 0.2-0.3. Simulation using discrete element method of the borehole wall instability in the Maokou formation which contains complex structural faces shows that when the angle between the orientation of a fracture and the maximum horizontal principal stress is between 45° and 60°, the fracture around the wellbore is easiest to be activated; a decrease in the friction coefficient of the surfaces of the fracture significantly increases the risk of shear slip of the rocks, thereby inducing wellbore instability such as caving and sloughing of the borehole wall and hole enlargement. Based on the above understanding, for a carbonate rock formation with high matrix strength and plenty of natural fractures, it is necessary to accurately assess the friction strength of the natural fractures, and use anti-collapse drilling fluids with excellent plugging capacity to effectively plug the fractures, suppress their lubrication effects, and enhance the friction strength of the surfaces of the fractures, thereby ensuring borehole wall stability and drilling safety.
-
表 1 茅口组碳酸盐岩井壁失稳模型宏-细观参数表
组别 细观参数 单位 取值 组别 细观参数 单位 取值 地层-井眼宏观参数 σH MPa 82.7 颗粒细观参数 弹性模量 GPa 35 σh MPa 76.3 粒径上限 mm 5.4~7.2 σv MPa 72.8 颗粒密度 g·cm−3 2.7 钻井液密度 g·cm−3 1.53 刚度比 无因次 3 井眼尺寸 mm 311.9 摩擦系数 无因次 0.5 平行粘结模型 法向刚度 GPa 24 000 平滑节理模型 法向刚度 GPa 11 100 切向刚度 GPa 8000 切向刚度 GPa 2400 弹性模量 GPa 35 摩擦系数 无因次 0.3~0.5 抗拉强度 MPa 8 抗拉强度 MPa 3 黏聚力 MPa 28 黏聚力 MPa 5 内摩擦角 35 内摩擦角 (°) 20 抗剪强度 MPa 15 抗剪强度 MPa 5 -
[1] 易海永, 张本健, 谷明峰, 等. 四川盆地东部地区二叠系茅口组孤立浅滩的发现及天然气勘探潜力[J]. 天然气工业, 2024, 44(6): 1-11.YI Haiyong, ZHANG Benjian, GU Mingfeng, et al. Discovery of isolated shoals in the Permian Maokou formation of eastern Sichuan basin and their natural gas exploration potential[J]. Natural Gas Industry, 2024, 44(6): 1-11. [2] 王国锋, 张大伟, 邓守伟, 等. 四川盆地自贡区块茅口组岩溶储层发育特征及其主控因素[J]. 天然气工业, 2022, 42(9): 63-75. doi: 10.3787/j.issn.1000-0976.2022.09.006WANG Guofeng, ZHANG Dawei, DENG Shouwei, et al. Development characteristics and main controlling factors of Maokou formation karst reservoirs in Zigong block of the Sichuan basin[J]. Natural Gas Industry, 2022, 42(9): 63-75. doi: 10.3787/j.issn.1000-0976.2022.09.006 [3] 张嘉宁. 非均质页岩水力压裂数值模拟研究[D]. 合肥: 中国科学技术大学, 2022.ZHANG Jianing. Numerical simulation of hydraulic fracturing in heterogeneous shale[D]. Hefei: University of Science and Technology of China, 2022. [4] 范翔宇, 蒙承, 张千贵, 等. 超深地层井壁失稳理论与控制技术研究进展[J]. 天然气工业, 2024, 44(1): 159-176. doi: 10.3787/j.issn.1000-0976.2024.01.015FAN Xiangyu, MENG Cheng, ZHANG Qiangui, et al. Research progress in the evaluation theory and control technology of wellbore instability in ultra-deep strata[J]. Natural Gas Industry, 2024, 44(1): 159-176. doi: 10.3787/j.issn.1000-0976.2024.01.015 [5] YOU L J, KANG Y L, CHEN Z X, et al. Wellbore instability in shale gas wells drilled by oil-based fluids[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 72: 294-299. doi: 10.1016/j.ijrmms.2014.08.017 [6] 杨斌, 许成元, 张浩, 等. 深部破碎地层井壁失稳机理研究进展与攻关对策[J]. 石油学报, 2024, 45(5): 875-888. doi: 10.7623/syxb202405009YANG Bin, XU Chengyuan, ZHANG Hao, et al. Research progress on mechanism of wellbore instability in deep fractured formations and related countermeasures[J]. Acta Petrolei Sinica, 2024, 45(5): 875-888. doi: 10.7623/syxb202405009 [7] TEMBE S, LOCKNER D A, WONG T F. Effect of clay content and mineralogy on frictional sliding behavior of simulated gouges: Binary and ternary mixtures of quartz, illite, and montmorillonite[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B3): B03416. [8] 宋义敏, 邓琳琳, 吕祥锋, 等. 岩石摩擦滑动变形演化及声发射特征研究[J]. 岩土力学, 2019, 40(8): 2899-2906,2913.SONG Yimin, DENG Linlin, LYU Xiangfeng, et al. Study of acoustic emission characteristics and deformation evolution during rock frictional sliding[J]. Rock and Soil Mechanics, 2019, 40(8): 2899-2906,2913. [9] TICHY J A, MEYER D M. Review of solid mechanics in tribology[J]. International Journal of Solids and Structures, 2000, 37(1/2): 391-400. [10] KOHLI A H, ZOBACK M D. Frictional properties of shale reservoir rocks[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(9): 5109-5125. doi: 10.1002/jgrb.50346 [11] 康毅力, 杨斌, 李相臣, 等. 页岩水化微观作用力定量表征及工程应用[J]. 石油勘探与开发, 2017, 44(2): 301-308. doi: 10.11698/PED.2017.02.17KANG Yili, YANG Bin, LI Xiangchen, et al. Quantitative characterization of micro forces in shale hydration and field applications[J]. Petroleum Exploration and Development, 2017, 44(2): 301-308. doi: 10.11698/PED.2017.02.17 [12] BONNELYE A, SCHUBNEL A, DAVID C, et al. Strength anisotropy of shales deformed under uppermost crustal conditions[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(1): 110-129. doi: 10.1002/2016JB013040 [13] RAMANA Y V, GOGTE B S. Dependence of coefficient of sliding friction in rocks on lithology and mineral characteristics[J]. Engineering Geology, 1989, 26(3): 271-279. doi: 10.1016/0013-7952(89)90014-8 [14] BYERLEE J. Friction of rocks[J]. Pure and Applied Geophysics, 1978, 116(4): 615-626. [15] LIU X Z, VEMIK L, NUR A. Effects of saturating fluids on seismic velocities in shale[C]//Paper presented at the 1994 SEG Annual Meeting. Los Angeles, California, 1994: SEG-1994-1121. [16] BARTON N, CHOUBEY V. The shear strength of rock joints in theory and practice[J]. Rock Mechanics, 1977, 10(1): 1-54. [17] ZHANG J G, AL-BAZALI T M, CHENEVERT M E, et al. Factors controlling the membrane efficiency of shales when interacting with water-based and oil-based muds[J]. SPE Drilling & Completion, 2008, 23(2): 150-158. [18] HADIZADEH J, SEHHATI R, TULLIS T. Porosity and particle shape changes leading to shear localization in small-displacement faults[J]. Journal of Structural Geology, 2010, 32(11): 1712-1720. doi: 10.1016/j.jsg.2010.09.010 [19] HOMAND F, BELEM T, SOULEY M. Friction and degradation of rock joint surfaces under shear loads[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25(10): 973-999. doi: 10.1002/nag.163 [20] YAN X P, YOU L J, KANG Y L, et al. Impact of drilling fluids on friction coefficient of brittle gas shale[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 106: 144-152. doi: 10.1016/j.ijrmms.2018.04.026 [21] YAN W, GE H K, WANG J B, et al. Experimental study of the friction properties and compressive shear failure behaviors of gas shale under the influence of fluids[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 153-161. doi: 10.1016/j.jngse.2016.04.019 [22] LABENSKI F, REID P, SANTOS H. Drilling fluids approaches for control of wellbore instability in fractured formations[C]//Paper presented at the SPE/IADC Middle East Drilling Technology Conference and Exhibition. Abu Dhabi, United Arab Emirates, 2003: SPE-85304-MS. [23] 马天寿, 陈平. 页岩地层中孔隙热弹性井眼稳定力学模型[J]. 岩石力学与工程学报, 2015, 34(S2): 3613-3623.MA Tianshou, CHEN Ping. Porothermoelastic mechanical model of wellbore stability in shale formations[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 3613-3623. [24] TAN Q G, YANG B, YOU L J, et al. Drill-in fluid optimization for formation damage control considering salt dissolution in saline-lacustrine reservoirs[J]. SPE Journal, 2024, 29(3): 1271-1288. doi: 10.2118/218018-PA [25] HUANG T, ZHONG Y, MOU Q H, et al. Discrete element method simulation of competitive fracture propagation in staged multi-cluster fracturing in shale oil reservoirs[J]. Bulletin of Engineering Geology and the Environment, 2024, 83(10): 404. doi: 10.1007/s10064-024-03897-2 [26] 杨明磊, 诸丹诚, 李涛, 等. 川南地区中二叠统茅口组颗粒滩对早成岩期岩溶储层的控制[J]. 现代地质, 2020, 34(2): 356-369. doi: 10.19657/j.geoscience.1000-8527.2020.02.14YANG Minglei, ZHU Dancheng, LI Tao, et al. Control of eogenetic karst reservoir by shoals in middle permian Maokou formation, southern Sichuan basin[J]. Geoscience, 2020, 34(2): 356-369. doi: 10.19657/j.geoscience.1000-8527.2020.02.14 [27] 潘冠昌, 杨斌, 张浩, 等. 超深层碳酸盐岩裂缝面形态与摩擦因数研究[J]. 断块油气田, 2022, 29(6): 794-799.PAN Guanchang, YANG Bin, ZHANG Hao, et al. Research on fracture surface morphology and friction coefficient of ultra-deep carbonate rock[J]. Fault-Block Oil and Gas Field, 2022, 29(6): 794-799. [28] 刘锋报, 孙金声, 尹达, 等. 塔里木万米科探井垮塌机理研究及技术对策[J]. 钻井液与完井液, 2024, 41(6): 709-718. doi: 10.12358/j.issn.1001-5620.2024.06.002LIU Fengbao, SUN Jinsheng, YIN Da, et al. Mechanisms of and technical measures for solving borehole wall instability in ten-thousand-meter scientific exploration wells in Tarim basin[J]. Drilling Fluid & Completion Fluid, 2024, 41(6): 709-718. doi: 10.12358/j.issn.1001-5620.2024.06.002 [29] LI D Q, YANG B, JIN J B, et al. Friction coefficients calculation via surface roughness characterization for tight sedimentary rocks[J]. Arabian Journal for Science and Engineering, 2023, 48(7): 9287-9298. doi: 10.1007/s13369-022-07314-2 [30] 姚路, 马胜利. 断层同震滑动的实验模拟——岩石高速摩擦实验的意义、方法与研究进展[J]. 地球物理学进展, 2013, 28(2): 607-623.YAO Lu, MA Shengli. Experimental simulation of coseismic fault sliding-significance, technological methods and research progress of high-velocity frictional experiments[J]. Progress in Geophysics, 2013, 28(2): 607-623. [31] 吕坤鸿, 张辉, 田得粮, 等. 鄂尔多斯盆地深部煤层井壁失稳机理及钻井液对策[J]. 钻井液与完井液, 2024, 41(5): 564-573. doi: 10.12358/j.issn.1001-5620.2024.05.001LYU Kunhong, ZHANG Hui, TIAN Deliang, et al. Mechanisms of borehole wall instability of deep coal seam in Ordos basin and drilling fluid countermeasures[J]. Drilling Fluid & Completion Fluid, 2024, 41(5): 564-573. doi: 10.12358/j.issn.1001-5620.2024.05.001 [32] CUNDALL P A. A computer model for simulating progressive large-scale movements in blocky rock systems[C]//Proceedings of the Symposium of the International Society for Rock Mechanics, 1971. [33] 侯冰, 金衍, 李松, 等. 不同粒径特征的砾石层井壁围岩破坏机制[J]. 天然气工业, 2015, 35(11): 66-70. doi: 10.3787/j.issn.1000-0976.2015.11.010HOU Bing, JIN Yan, LI Song, et al. Failure mechanisms of borehole wall rocks in gravel beds with different grain sizes[J]. Natural Gas Industry, 2015, 35(11): 66-70. doi: 10.3787/j.issn.1000-0976.2015.11.010 [34] KARATELA E, TAHERI A. Three-dimensional hydro-mechanical model of borehole in fractured rock mass using discrete element method[J]. Journal of Natural Gas Science and Engineering, 2018, 53: 263-275. doi: 10.1016/j.jngse.2018.02.032 [35] PARK N, OLSON J E E, Holder J. Stress-corrosion cracking as an alternative time-dependent shale-stability model[J]. SPE Drilling & Completion, 2010, 25(2): 168-176. [36] 任鹏举,刘峰,韩东东,等. 渤中火成岩井壁失稳因素研究[J]. 钻采工艺, 2024, 47(3): 23-32.REN Pengju,LIU Feng,HAN Dongdong,et al. Study on wellbore instability factors of igneous rock formation in Bozhong[J]. Drilling and Production Technology, 2024, 47(3): 23-32 [37] 高书阳, 薄克浩, 张亚云, 等. 川东北陆相页岩储层井壁失稳机理研究[J]. 钻井液与完井液, 2025, 42(2): 217-224. doi: 10.12358/j.issn.1001-5620.2025.02.009GAO Shuyang, BO Kehao, ZHANG Yayun, et al. Study on wellbore instability mechanism of continental shale reservoir in northeastern Sichuan basin[J]. Drilling Fluid & Completion Fluid, 2025, 42(2): 217-224. doi: 10.12358/j.issn.1001-5620.2025.02.009 [38] 耿立军, 刘峰, 冮鹏, 等. 渤海盆地锦州25-1区块中部泥岩地层井壁失稳机理及钻井液对策[J]. 钻井液与完井液, 2025, 42(1): 58-65.GENG Lijun, LIU Feng, GANG peng, et al. Mechanisms of borehole wall destabilization in drilling shale formations in thecentral part of block Jinzhou-25-1 in Bohai basin and drilling fluid countermeasures[J]. Drilling Fluid & Completion Fluid, 2025, 42(1): 58-65 -
下载: