Plugging Diagnosis and Treatment Measures of Gas Well for Leikoupo Formation in Western Sichuan Basin
-
摘要: 川西雷口坡组气藏自2023年18口井陆续投产之后,已发生40余井次明显堵塞,严重影响气田产能释放。本文基于堵塞物系统检测和溯源分析,结合机器学习算法,研究了堵塞影响因素和井筒堵点分布规律,建立了基于“堵塞量化诊断”的堵塞井分类治理对策。研究结果表明:①堵塞类型可分为有机、无机、复合堵塞三类,堵塞物成分与国内部分含硫气田的早期具有一定的相似性;②早期堵塞与钻井、储层改造及完井工艺相关,主要堵点多沿生产管柱分布,在井口和水平井产层前段堵点数量略高于其它井段;③15%盐酸配制的酸性解堵液对无机堵塞物溶解率达65.7%,有机堵塞物降黏大于90%;④“堵塞量化诊断-连续油管”解堵工艺在41井次应用中实现100%解堵成功率,解堵后平均产能恢复率达128.6%。上述技术成果可为同类含硫气井堵塞治理提供借鉴。Abstract: The Leikoupo Formation gas reservoir in West Sichuan Basin has been significantly plugged for more than 40 wells since the 18 wells were successively started production in 2023, which has seriously affected the gas field production. Based on systematic analysis of plugging composition and origin, combined with machine learning algorithms, this study investigates the influencing factors and distribution patterns of downhole plugging zones. A classification and mitigation strategy has been established using quantitative blockage diagnostics. The results indicate that: ①Plugging types can be categorized into organic, inorganic, and compound plugs. The composition of solid deposits shows certain similarities with those observed in early-stage sour gas fields in other regions of China. ②Early-stage plugging is associated with drilling, stimulation, and completion operations. Most plugs are distributed along production tubing, with slightly higher frequency observed near the wellhead and in the front section of horizontal well production zones. ③Acidizing fluids prepared with 15% HCl achieve a dissolution rate of 65.7% for inorganic deposits and a viscosity reduction exceeding 90% for organic substances. ④The integrated process combining quantitative diagnostics with coiled tubing intervention achieved a 100% success rate in 41 field applications, with an average productivity recovery rate of 128.6% post-treatment. The above technical results can provide a reference for similar sulfur-containing gas well plugging management.
-
Key words:
- Plugging /
- treatment /
- Western Sichuan Basin /
- Leikoupo formation /
- CT /
- Acid
-
表 1 川西雷四气藏堵塞物成分及分类
堵塞分类/井号 取样时间/位置 组分含量 有机堵塞 P3-4 第1次解堵
(分离器)91.23%有机物 66.47%长链烷烃,其它为含苯化合物 8.77%无机物 铁的氧化物、FeS、BaSO4 第1次解堵
(井下工具带出)89%有机物 98%长链烷烃 11%无机物 硫磺、FeS2 MJ-1 第2次解堵后
(分离器)93.95%无机物 58.5%CaSO4、41.5%硫化物 6.05%有机物 聚丙烯酰胺 第4次连油解堵
(捕屑器)90.1%有机物 90.75%含苯化合物 9.9%无机物 BaSO4、FeS、CaSO4、二氧化硅 复合堵塞 XS-101 第3次解堵前后
(分离器)<11.6%有机物 聚丙烯酰胺和芳烃类 >88.4%无机物 FeS、黏土矿物、BaSO4 第4次连油解堵
(捕屑器)46.99%有机物 45%长链烷烃、55%苯基化合物 53.1%无机物 FeS、BaSO4、二氧化硅 P4-5 第1次解堵前
(分离器)90%无机物 氯化物 10%有机物 沥青、苯胺 第3次解堵后
(分离器)44.8%无机物 FeS、BaSO4、黏土矿物、50%氯化物 55.2%有机物 70%烷烃类,30%聚丙烯酰胺 无机堵塞 P6-4 第1次解堵前
(分离器)10%~15%有机物 聚丙烯酰胺、芳烃类 85%~90%无机物 硫化亚铁、硫酸钡、黏土矿物 P5-4 15.7%有机物 聚丙烯酰胺、芳烃类 84.3%无机物 硫化亚铁、硫酸钡、黏土矿物 表 2 其它含硫气田堵塞物成因分析
气田 堵塞物 来源 川西雷四气藏 有机堵塞:>89%有机物(98%长链烷烃)、无机物(BaSO4、
FeS、CaSO4、二氧化硅等)
无机堵塞:>85%无机物(硫化亚铁、硫酸钡、黏土矿物)、
有机物(聚丙烯酰胺、芳烃类)
复合堵塞:55.2%无机物(硫化亚铁、硫酸钡、黏土矿物、50%氯化物),44.8%有机物(长链烷烃、芳烃类等)本文 安岳气田高石梯区块 无机物80%~90%(FeS、SiO2、CaCO3)、有机物<20%(烃、芳香烃及酯类) 郑清平等2023[15] 有机物>60%(长链脂肪酸与脂肪酸酯、饱和烷烃等)
无机物<40%(Fe的硫化物和氧化物、Ca和Mg碳酸盐等)大猫坪长兴组重庆气矿 有机物22%~33%(长链烷烃、烯酸类化合物)
无机物67%~77%(铁的硫化物40%、硫酸盐11%~20%)刘浩琦等2020[16] 元坝气田 有机物53.64%(酰胺类缓蚀剂、沥青质类重烃组分和磺化类水基
钻井液添加剂)无机物46.36%(86.5%FeS2和13.47%BaSO4)万里平等2021[17] 高磨台缘带 无机物65.02%~85.43%(FeS、FeS2、Fe7S8、FeCO3等),
有机物10.81%~27.15%(烷烃、烯烃)陈林等2023[4] 普光气田 P201-2、P2011-3、P201-4井、P105-2H、P301-3井无机物CaCO3(63~98%)
大湾405-3井FeS2和FeS为主(Fe: 30%~40%,S: 30%~35%)
P204-2H有机物46.9%,无机物53.1%(FeS、BaSO4、CaSO4)
P301-3井前期无机堵塞63%~98%(CaCO3)、后期有机堵塞为主(烷烃)刘方检2019[18] 一类无机堵塞84%~95%(CaCO3);一类有机为主(长链烷烃) 李树达2021[19] 川东石炭系 无机物91.7%(铁的氧化物、金属碳酸盐)、有机物(长链烷烃、聚醚等) 叶颉枭等2020[20] 龙岗气田 28%有机物(烃类油、部分脂肪酸、少量脂肪酸酯、微量的单取代苯、
硅油);72%无机物(硫化亚铁、硫、碳、四氧化三铁、少量氧化硅、硫酸盐陈大钧等2013[21] 表 3 各井段主要堵点分布统计
井段 堵点占比/% 井段 堵点占比/% (0,1000) 20.3 (4000,5000) 9.4 (1000,2000) 14.1 (5000,6000) 7.8 (2000,3000) 9.4 6000≤ 29.6 (3000,4000) 9.4 表 4 七种解堵液对堵塞物溶解效果
解堵液 无机堵塞物 有机堵塞物 解堵液1(甲苯) 溶解率13%~33% 溶解率42%~60% 解堵液2(乙醇) 溶解率10%~36% 溶解率25%~58% 解堵液3(丙酮) 溶解率14%~30% 溶解率<20% 酸液 溶解率65.7% 降黏>90% 降黏解堵液1 几乎不溶解 降黏91% 降黏解堵液2 几乎不溶解 降黏73% 降黏解堵液3 几乎不溶解 降黏63.6% 表 5 基于“堵塞程度量化方法”的分类治理对策
堵塞程度 $ \Delta P $ WA WB 堵塞位置 解堵方案优化 Ⅰ ↑ ↓ ↑ B区堵塞增加 高排量大剂量分段顶替+焖井:10 m3酸(0.8 m3/min)+
20~25 m3水顶替(0.8 m3/min)+焖井30 min+
1个油管容积清水顶替(0.8 m3/min)- ↓ ↑ ↑ - ↑ Ⅱ ↓ ↑ ↓ 堵塞正逐渐由B区转为A区 高排量大剂量模式:20~25 m3酸(0.8 m3/min)+
1个油管容积清水顶替(0.8 m3/min)- ↑ ↓ ↓ - ↓ Ⅲ ↑ ↑ - A区堵塞 交替排量分段顶替大剂量模式:5 m3酸(0~0.5 m3/min)+
15 m3水顶替(0.8 m3/min)+20 m3酸(0~0.5 m3/min)+
1个油管容积清水顶替(0~0.5 m3/min)- - - Ⅳ ↓ ↓ - 低排量小剂量模式:10~20 m3酸(0~0.5 m3/min)+
1个油管容积清水顶替(0~0.5 m3/min) -
[1] 熊亮, 隆轲, 曹勤明, 等. 四川盆地川西气田多层系成藏条件及勘探开发关键技术[J]. 石油学报, 2024, 45(3): 595-614.XIONG Liang, LONG Ke, CAO Qinming, et al. Multilayer accumulation conditions and key technologies for exploration and development of the west Sichuan gas field in Sichuan Basin[J]. Acta Petrolei Sinica, 2024, 45(3): 595-614. [2] 李书兵, 许国明, 宋晓波. 川西龙门山前构造带彭州雷口坡组大型气田的形成条件[J]. 中国石油勘探, 2016, 21(3): 74-82.LI Shubing, XU Guoming, SONG Xiaobo. Forming conditions of Pengzhou large gas field of Leikoupo formation in Longmenshan piedmont tectonic belt, western Sichuan Basin[J]. China Petroleum Exploration, 2016, 21(3): 74-82. [3] QING Y H, LI S, LIAO Z Y, et al. Dolomitisation under an arid climate at low sea-level: a case study of the Lei 4 member of the Middle Triassic Leikoupo formation, western Sichuan depression, China[J]. Australian Journal of Earth Sciences, 2023, 70(3): 423-441. doi: 10.1080/08120099.2023.2173653 [4] 陈林, 吕亚博, 欧家强, 等. 高磨台缘带灯影组气藏气井堵塞机理及治理对策[J]. 西南石油大学学报(自然科学版), 2023, 45(6): 113-124.CHEN Lin, LYU Yabo, OU Jiaqiang, et al. Plugging mechanism and treatment measures of dengying formation gas reservoir in Gaoshi-Moxi platform margin belt[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(6): 113-124. [5] LUO W, WU Q. Development of wellbore compound blockage removal technology to reduce production loss in the ultra-deep and high-sulfur Yuanba gas field[J]. Journal of Petroleum Exploration and Production Technology, 2020, 10(8): 3711-3721. doi: 10.1007/s13202-020-01000-5 [6] HARIS A, KAMADIBRATA A T, RIYANTO A. Condensate gas blockage simulation in a gas reservoir: a case study of a gas field in the Mahakam Delta, East Kalimantan, Indonesia[J]. Arabian Journal of Geosciences, 2018, 11(14): 363. doi: 10.1007/s12517-018-3692-2 [7] MEMON A, BORMAN C, MOHAMMADZADEH O, et al. Systematic evaluation of asphaltene formation damage of black oil reservoir fluid from Lake Maracaibo, Venezuela[J]. Fuel, 2017, 206: 258-275. doi: 10.1016/j.fuel.2017.05.024 [8] HU J H, HE S L, YANG X F, et al. A sulfur plugging experiment in the presence of ferric ion[J]. Petroleum Science and Technology, 2011, 29(1): 13-18. doi: 10.1080/10916460903330148 [9] LV Y B, OU J Q, FU H R, et al. Unblocking process of complex sulfur–iron scale blockage in Sulfur-Bearing gas wells and its mechanism[J]. ACS Omega, 2023, 8(43): 40242-40250. doi: 10.1021/acsomega.3c04031 [10] ABBASI A, KHAMEHCHI E, KHALEGHI M R, et al. A new formulation for removing condensate blockage for low permeable gas reservoir[J]. Journal of Petroleum Exploration and Production Technology, 2024, 14(8): 2491-2507. [11] RIYANTO L, MUSA M N, DERIS N A, et al. Innovative process for formation damage removal in sandstone reservoir based on real-time downhole monitoring: a malaysia case history[C]//SPE Annual Technical Conference and Exhibition. Houston, Texas, USA: SPE, 2015: SPE-174778-MS. [12] HU J H, ZHAO J Z, WANG L, et al. Prediction model of elemental sulfur solubility in sour gas mixtures[J]. Journal of Natural Gas Science and Engineering, 2014, 18: 31-38. doi: 10.1016/j.jngse.2014.01.011 [13] SAFARI H, SHOKROLLAHI A, JAMIALAHMADI M, et al. Prediction of the aqueous solubility of BaSO4 using pitzerion interaction model and LSSVM algorithm[J]. Fluid Phase Equilibria, 2014, 374: 48-62. doi: 10.1016/j.fluid.2014.04.010 [14] ZHANG Y C, ARYA A, KONTOGEORGIS G, et al. Modeling the phase behaviour of bitumen/n-alkane systems with the cubic plus association (CPA) equation of state[J]. Fluid Phase Equilibria, 2019, 486: 119-138. doi: 10.1016/j.fluid.2019.01.004 [15] 郑清平, 黄霖, 罗炫, 等. 高石梯区块气井堵塞原因分析及对策研究[C]//第33届全国天然气学术年会. 南宁: 中国石油学会天然气专业委员会, 2023: 796-804.ZHENG Qingping, HUANG Lin, LUO Xuan, et al. Analysis of gas well blockage causes and countermeasures in Gaoshiti Block[C]//Proceedings of the 33rd National Natural Gas Academic Conference. Nanning: Natural Gas Professional Committee of China Petroleum Society, 2023: 796-804. [16] 刘浩琦, 刘波, 胡志国, 等. 大猫坪长兴高含硫气井堵塞原因分析及防治措施研究[C]//第32届全国天然气学术年会. 重庆: 中国石油学会天然气专业委员会, 2020: 2047-2054.LIU Haoqi, LIU Bo, HU Zhiguo, et al. Analysis of blockage causes and prevention measures for high-sulfur gas wells in Dachangping Changxing formation[C]//The 32nd National Natural Gas Academic Annual Conference. Chongqing: Natural Gas Professional Committee of China Petroleum Society, 2020: 2047-2054. [17] 万里平, 姚金星, 李皋, 等. 元坝气田X1井井筒堵塞原因分析[J]. 长江大学学报(自然科学版), 2021, 18(2): 62-68.WAN Liping, YAO Jinxing, LI Gao, et al. Analysis of causes of shaft blockage in well X1 of Yuanba gas field[J]. Journal of Yangtze University (Natural Science Edition), 2021, 18(2): 62-68. [18] 刘方检. 普光气田生产井油管堵塞原因及对策研究[D]. 成都: 西南石油大学, 2019.LIU Fangjian. Research on the causes and countermeasures of tubing clogging in production wells of Puguang gas field[D]. Chengdu: Southwest Petroleum University, 2019. [19] 李树达. 普光高含硫气井井筒解堵技术优化研究及应用[D]. 青岛: 中国石油大学(华东), 2021.LI Shuda. Optimization research and application of wellbore blockage removal technology for high hydrogen sulfide gas well in puguang gas field[D]. Qingdao: College of Petroleum Engineering China University of Petroleum (East China), 2021. [20] 叶颉枭, 张华礼, 李松, 等. 川东石炭系低压气井解堵工艺研究与应用[J]. 石油与天然气化工, 2021, 50(3): 71-74,84.YE Jiexiao, ZHANG Huali, LI Song, et al. Research and application of blockage removal technology for low-pressure gas well in eastern Sichuan Carboniferous formation[J]. Chemical Engineering of Oil and Gas, 2021, 50(3): 71-74,84. [21] 陈大钧, 冯丹阳, 刘丹宇, 等. 龙岗礁滩气藏主干井气井堵塞机理[J]. 钻井液与完井液, 2013, 30(6): 13-16. doi: 10.3969/j.issn.1001-5620.2013.06.004CHEN Dajun, FENG Danyang, LIU Danyu, et al. Mechanism of gas well blockage in main wells of Longgang reef-flat gas reservoir[J]. Drilling Fluid & Completion Fluid, 2013, 30(6): 13-16. doi: 10.3969/j.issn.1001-5620.2013.06.004 [22] 马天寿, 张东洋, 陈颖杰, 等. 基于神经网络模型的水平井破裂压力预测方法[J]. 中南大学学报(自然科学版), 2024, 55(1): 330-345.MA Tianshou, ZHANG Dongyang, CHEN Yingjie, et al. Fracture pressure prediction method of horizontal well based on neural network model[J]. Journal of Central South University (Science and Technology), 2024, 55(1): 330-345. [23] ZHAO G, DING W L, TIAN J, et al. Spearman rank correlations analysis of the elemental, mineral concentrations, and mechanical parameters of the lower Cambrian Niutitang shale: a case study in the Fenggang block, Northeast Guizhou province, South China[J]. Journal of Petroleum Science and Engineering, 2022, 208, Part C: 109550. [24] 李芋池, 罗明良, 战永平, 等. 低腐蚀自生热冻胶压裂液流变性能及反应动力学研究[J]. 钻井液与完井液, 2025, 42(1): 117-126.LI Yuchi, LUO Mingliang, ZHAN Yongping, et al. Study on rheology and reaction kinetics of low corrosion self-heating gelling fracturing fluids[J]. Drilling Fluid & Completion Fluid, 2025, 42(1): 117-126 [25] 巩泽文, 贾建称, 许耀波, 等. 基于测井信息的煤层顶板水平井抽采煤层气技术[J]. 天然气工业, 2021, 41(2): 83-91.GONG Zewen, JIA Jianchen, XU Yaobo, et al. The coal seam roof strata-in horizontal well CBM gas drainage technology based on logging information[J]. Natural Gas Industry, 2021, 41(2): 83-91. [26] 游利军, 邹俊, 康毅力, 等. 裂缝性致密变质岩气藏钻井液漏失损害机理[J]. 钻井液与完井液, 2024, 41(6): 719-727.YOU Lijun, ZOU Jun, KANG Yili, et al. Mechanisms of formation damage by lost drilling fluids in fractured tight metamorphic rock gas reservoirs[J]. Drilling Fluid & Completion Fluid, 2024, 41(6): 719-727. [27] Jafarifar I, Simi A, Abbasi I, et al. Application of soft computing approaches for modeling annular pressure loss of slim-hole wells in one of Iranian central oil fields[J]. Soft Computing, 2023(21): 16125-16142. [28] FERNANDES M A, GILDIN E, SAMPAIO M A. Data-driven estimation of flowing bottom-hole pressure in petroleum wells using long short-term memory[C]//2024 International Conference on Machine Learning and Applications. Miami, FL, USA: IEEE, 2024: 1530-1537. DOI: 10.1109/ICMLA61862.2024.00236. [29] ZHAO G, DING W L, TIAN J, et al. Spearman rank correlations analysis of the elemental, mineral concentrations, and mechanical parameters of the lower Cambrian Niutitang shale: a case study in the Fenggang block, northeast Guizhou province, south China[J]. Journal of Petroleum Science and Engineering, 2022, 208, Part C: 109550. [30] 何瑞兵, 谭伟雄, 白瑞婷, 等. 高温致密砂砾岩储层盐敏及盐析损害机理[J]. 钻井液与完井液, 2024, 41(2): 155-165. doi: 10.12358/j.issn.1001-5620.2024.02.003HE Ruibing, TAN Weixiong, BAI Ruiting, et al. Formation damage in high temperature dense glutenite reservoirs by salt sensitivity and salt precipitation[J]. Drilling Fluid & Completion Fluid, 2024, 41(2): 155-165. doi: 10.12358/j.issn.1001-5620.2024.02.003 -