留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

川西雷口坡组气井堵塞诊断及治理对策

刘殷韬 康正 张国东 张瑶 柯玉彪 汪旭东 何琳婧

刘殷韬,康正,张国东,等. 川西雷口坡组气井堵塞诊断及治理对策[J]. 钻井液与完井液,2025,42(5):686-695 doi: 10.12358/j.issn.1001-5620.2025.05.016
引用本文: 刘殷韬,康正,张国东,等. 川西雷口坡组气井堵塞诊断及治理对策[J]. 钻井液与完井液,2025,42(5):686-695 doi: 10.12358/j.issn.1001-5620.2025.05.016
LIU Yintao, KANG Zheng, ZHANG Guodong, et al.Plugging diagnosis and treatment measures of gas well for leikoupo formation in western sichuan basin[J]. Drilling Fluid & Completion Fluid,2025, 42(5):686-695 doi: 10.12358/j.issn.1001-5620.2025.05.016
Citation: LIU Yintao, KANG Zheng, ZHANG Guodong, et al.Plugging diagnosis and treatment measures of gas well for leikoupo formation in western sichuan basin[J]. Drilling Fluid & Completion Fluid,2025, 42(5):686-695 doi: 10.12358/j.issn.1001-5620.2025.05.016

川西雷口坡组气井堵塞诊断及治理对策

doi: 10.12358/j.issn.1001-5620.2025.05.016
基金项目: 中石化西南油气分公司项目“川西海相解堵技术研究”(CYQ-104-2403)资助。
详细信息
    作者简介:

    刘殷韬,高级工程师,毕业于西南石油大学石油工程专业,现在主要从事石油与天然气工程工作。E-mail:liuyintao.xnyq@sinopec.com

    通讯作者:

    康正,主要从事完井测试与井筒工作液的研究工作。E-mail:kangzh2023@163.com

  • 中图分类号: TE 258

Plugging Diagnosis and Treatment Measures of Gas Well for Leikoupo Formation in Western Sichuan Basin

  • 摘要: 川西雷口坡组气藏自2023年18口井陆续投产之后,已发生40余井次明显堵塞,严重影响气田产能释放。本文基于堵塞物系统检测和溯源分析,结合机器学习算法,研究了堵塞影响因素和井筒堵点分布规律,建立了基于“堵塞量化诊断”的堵塞井分类治理对策。研究结果表明:①堵塞类型可分为有机、无机、复合堵塞三类,堵塞物成分与国内部分含硫气田的早期具有一定的相似性;②早期堵塞与钻井、储层改造及完井工艺相关,主要堵点多沿生产管柱分布,在井口和水平井产层前段堵点数量略高于其它井段;③15%盐酸配制的酸性解堵液对无机堵塞物溶解率达65.7%,有机堵塞物降黏大于90%;④“堵塞量化诊断-连续油管”解堵工艺在41井次应用中实现100%解堵成功率,解堵后平均产能恢复率达128.6%。上述技术成果可为同类含硫气井堵塞治理提供借鉴。

     

  • 图  1  部分样品实物与SEM扫描电镜图

    图  2  P-1井目的层铸体薄片图

    图  3  MLP网络结构

    图  4  各参数与因变量的Pearson相关系数

    图  5  生产天数/解堵次数MLP模拟结果(左:MLP模型中投产到生产天数/解堵次数预测值与实际值;右:该MLP模型中各参数权重占比)

    图  6  堵塞程度量化方法示意图

    图  7  井筒堵塞程度和气井堵塞压降变化曲线

    图  8  P6-4井解堵工艺生产曲线

    图  9  XS-101井连油作业遇阻示意图

    图  10  XS-101井生产曲线

    表  1  川西雷四气藏堵塞物成分及分类

    堵塞分类/井号 取样时间/位置 组分含量
    有机堵塞 P3-4 第1次解堵
    (分离器)
    91.23%有机物 66.47%长链烷烃,其它为含苯化合物
    8.77%无机物 铁的氧化物、FeS、BaSO4
    第1次解堵
    (井下工具带出)
    89%有机物 98%长链烷烃
    11%无机物 硫磺、FeS2
    MJ-1 第2次解堵后
    (分离器)
    93.95%无机物 58.5%CaSO4、41.5%硫化物
    6.05%有机物 聚丙烯酰胺
    第4次连油解堵
    (捕屑器)
    90.1%有机物 90.75%含苯化合物
    9.9%无机物 BaSO4、FeS、CaSO4、二氧化硅
    复合堵塞 XS-101 第3次解堵前后
    (分离器)
    <11.6%有机物 聚丙烯酰胺和芳烃类
    >88.4%无机物 FeS、黏土矿物、BaSO4
    第4次连油解堵
    (捕屑器)
    46.99%有机物 45%长链烷烃、55%苯基化合物
    53.1%无机物 FeS、BaSO4、二氧化硅
    P4-5 第1次解堵前
    (分离器)
    90%无机物 氯化物
    10%有机物 沥青、苯胺
    第3次解堵后
    (分离器)
    44.8%无机物 FeS、BaSO4、黏土矿物、50%氯化物
    55.2%有机物 70%烷烃类,30%聚丙烯酰胺
    无机堵塞 P6-4 第1次解堵前
    (分离器)
    10%~15%有机物 聚丙烯酰胺、芳烃类
    85%~90%无机物 硫化亚铁、硫酸钡、黏土矿物
    P5-4 15.7%有机物 聚丙烯酰胺、芳烃类
    84.3%无机物 硫化亚铁、硫酸钡、黏土矿物
    下载: 导出CSV

    表  2  其它含硫气田堵塞物成因分析

    气田 堵塞物 来源
    川西雷四气藏 有机堵塞:>89%有机物(98%长链烷烃)、无机物(BaSO4
    FeS、CaSO4、二氧化硅等)
    无机堵塞:>85%无机物(硫化亚铁、硫酸钡、黏土矿物)、
    有机物(聚丙烯酰胺、芳烃类)
    复合堵塞:55.2%无机物(硫化亚铁、硫酸钡、黏土矿物、50%氯化物),44.8%有机物(长链烷烃、芳烃类等)
    本文
    安岳气田高石梯区块 无机物80%~90%(FeS、SiO2、CaCO3)、有机物<20%(烃、芳香烃及酯类) 郑清平等2023[15]
    有机物>60%(长链脂肪酸与脂肪酸酯、饱和烷烃等)
    无机物<40%(Fe的硫化物和氧化物、Ca和Mg碳酸盐等)
    大猫坪长兴组重庆气矿 有机物22%~33%(长链烷烃、烯酸类化合物)
    无机物67%~77%(铁的硫化物40%、硫酸盐11%~20%)
    刘浩琦等2020[16]
    元坝气田 有机物53.64%(酰胺类缓蚀剂、沥青质类重烃组分和磺化类水基
    钻井液添加剂)无机物46.36%(86.5%FeS2和13.47%BaSO4
    万里平等2021[17]
    高磨台缘带 无机物65.02%~85.43%(FeS、FeS2、Fe7S8、FeCO3等),
    有机物10.81%~27.15%(烷烃、烯烃)
    陈林等2023[4]
    普光气田
    P201-2、P2011-3、P201-4井、P105-2H、P301-3井无机物CaCO3(63~98%)
    大湾405-3井FeS2和FeS为主(Fe: 30%~40%,S: 30%~35%)
    P204-2H有机物46.9%,无机物53.1%(FeS、BaSO4、CaSO4
    P301-3井前期无机堵塞63%~98%(CaCO3)、后期有机堵塞为主(烷烃)
    刘方检2019[18]
    一类无机堵塞84%~95%(CaCO3);一类有机为主(长链烷烃) 李树达2021[19]
    川东石炭系 无机物91.7%(铁的氧化物、金属碳酸盐)、有机物(长链烷烃、聚醚等) 叶颉枭等2020[20]
    龙岗气田 28%有机物(烃类油、部分脂肪酸、少量脂肪酸酯、微量的单取代苯、
    硅油);72%无机物(硫化亚铁、硫、碳、四氧化三铁、少量氧化硅、硫酸盐
    陈大钧等2013[21]
    下载: 导出CSV

    表  3  各井段主要堵点分布统计

    井段堵点占比/%井段堵点占比/%
    (0,1000)20.3(4000,5000)9.4
    (1000,2000)14.1(5000,6000)7.8
    (2000,3000)9.46000≤29.6
    (3000,4000)9.4
    下载: 导出CSV

    表  4  七种解堵液对堵塞物溶解效果

    解堵液 无机堵塞物 有机堵塞物
    解堵液1(甲苯) 溶解率13%~33% 溶解率42%~60%
    解堵液2(乙醇) 溶解率10%~36% 溶解率25%~58%
    解堵液3(丙酮) 溶解率14%~30% 溶解率<20%
    酸液 溶解率65.7% 降黏>90%
    降黏解堵液1 几乎不溶解 降黏91%
    降黏解堵液2 几乎不溶解 降黏73%
    降黏解堵液3 几乎不溶解 降黏63.6%
    下载: 导出CSV

    表  5  基于“堵塞程度量化方法”的分类治理对策

    堵塞程度 $ \Delta P $ WA WB 堵塞位置 解堵方案优化
    B区堵塞增加高排量大剂量分段顶替+焖井:10 m3酸(0.8 m3/min)+
    20~25 m3水顶替(0.8 m3/min)+焖井30 min+
    1个油管容积清水顶替(0.8 m3/min)
    堵塞正逐渐由B区转为A区高排量大剂量模式:20~25 m3酸(0.8 m3/min)+
    1个油管容积清水顶替(0.8 m3/min)
    A区堵塞交替排量分段顶替大剂量模式:5 m3酸(0~0.5 m3/min)+
    15 m3水顶替(0.8 m3/min)+20 m3酸(0~0.5 m3/min)+
    1个油管容积清水顶替(0~0.5 m3/min)
    低排量小剂量模式:10~20 m3酸(0~0.5 m3/min)+
    1个油管容积清水顶替(0~0.5 m3/min)
    下载: 导出CSV
  • [1] 熊亮, 隆轲, 曹勤明, 等. 四川盆地川西气田多层系成藏条件及勘探开发关键技术[J]. 石油学报, 2024, 45(3): 595-614.

    XIONG Liang, LONG Ke, CAO Qinming, et al. Multilayer accumulation conditions and key technologies for exploration and development of the west Sichuan gas field in Sichuan Basin[J]. Acta Petrolei Sinica, 2024, 45(3): 595-614.
    [2] 李书兵, 许国明, 宋晓波. 川西龙门山前构造带彭州雷口坡组大型气田的形成条件[J]. 中国石油勘探, 2016, 21(3): 74-82.

    LI Shubing, XU Guoming, SONG Xiaobo. Forming conditions of Pengzhou large gas field of Leikoupo formation in Longmenshan piedmont tectonic belt, western Sichuan Basin[J]. China Petroleum Exploration, 2016, 21(3): 74-82.
    [3] QING Y H, LI S, LIAO Z Y, et al. Dolomitisation under an arid climate at low sea-level: a case study of the Lei 4 member of the Middle Triassic Leikoupo formation, western Sichuan depression, China[J]. Australian Journal of Earth Sciences, 2023, 70(3): 423-441. doi: 10.1080/08120099.2023.2173653
    [4] 陈林, 吕亚博, 欧家强, 等. 高磨台缘带灯影组气藏气井堵塞机理及治理对策[J]. 西南石油大学学报(自然科学版), 2023, 45(6): 113-124.

    CHEN Lin, LYU Yabo, OU Jiaqiang, et al. Plugging mechanism and treatment measures of dengying formation gas reservoir in Gaoshi-Moxi platform margin belt[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(6): 113-124.
    [5] LUO W, WU Q. Development of wellbore compound blockage removal technology to reduce production loss in the ultra-deep and high-sulfur Yuanba gas field[J]. Journal of Petroleum Exploration and Production Technology, 2020, 10(8): 3711-3721. doi: 10.1007/s13202-020-01000-5
    [6] HARIS A, KAMADIBRATA A T, RIYANTO A. Condensate gas blockage simulation in a gas reservoir: a case study of a gas field in the Mahakam Delta, East Kalimantan, Indonesia[J]. Arabian Journal of Geosciences, 2018, 11(14): 363. doi: 10.1007/s12517-018-3692-2
    [7] MEMON A, BORMAN C, MOHAMMADZADEH O, et al. Systematic evaluation of asphaltene formation damage of black oil reservoir fluid from Lake Maracaibo, Venezuela[J]. Fuel, 2017, 206: 258-275. doi: 10.1016/j.fuel.2017.05.024
    [8] HU J H, HE S L, YANG X F, et al. A sulfur plugging experiment in the presence of ferric ion[J]. Petroleum Science and Technology, 2011, 29(1): 13-18. doi: 10.1080/10916460903330148
    [9] LV Y B, OU J Q, FU H R, et al. Unblocking process of complex sulfur–iron scale blockage in Sulfur-Bearing gas wells and its mechanism[J]. ACS Omega, 2023, 8(43): 40242-40250. doi: 10.1021/acsomega.3c04031
    [10] ABBASI A, KHAMEHCHI E, KHALEGHI M R, et al. A new formulation for removing condensate blockage for low permeable gas reservoir[J]. Journal of Petroleum Exploration and Production Technology, 2024, 14(8): 2491-2507.
    [11] RIYANTO L, MUSA M N, DERIS N A, et al. Innovative process for formation damage removal in sandstone reservoir based on real-time downhole monitoring: a malaysia case history[C]//SPE Annual Technical Conference and Exhibition. Houston, Texas, USA: SPE, 2015: SPE-174778-MS.
    [12] HU J H, ZHAO J Z, WANG L, et al. Prediction model of elemental sulfur solubility in sour gas mixtures[J]. Journal of Natural Gas Science and Engineering, 2014, 18: 31-38. doi: 10.1016/j.jngse.2014.01.011
    [13] SAFARI H, SHOKROLLAHI A, JAMIALAHMADI M, et al. Prediction of the aqueous solubility of BaSO4 using pitzerion interaction model and LSSVM algorithm[J]. Fluid Phase Equilibria, 2014, 374: 48-62. doi: 10.1016/j.fluid.2014.04.010
    [14] ZHANG Y C, ARYA A, KONTOGEORGIS G, et al. Modeling the phase behaviour of bitumen/n-alkane systems with the cubic plus association (CPA) equation of state[J]. Fluid Phase Equilibria, 2019, 486: 119-138. doi: 10.1016/j.fluid.2019.01.004
    [15] 郑清平, 黄霖, 罗炫, 等. 高石梯区块气井堵塞原因分析及对策研究[C]//第33届全国天然气学术年会. 南宁: 中国石油学会天然气专业委员会, 2023: 796-804.

    ZHENG Qingping, HUANG Lin, LUO Xuan, et al. Analysis of gas well blockage causes and countermeasures in Gaoshiti Block[C]//Proceedings of the 33rd National Natural Gas Academic Conference. Nanning: Natural Gas Professional Committee of China Petroleum Society, 2023: 796-804.
    [16] 刘浩琦, 刘波, 胡志国, 等. 大猫坪长兴高含硫气井堵塞原因分析及防治措施研究[C]//第32届全国天然气学术年会. 重庆: 中国石油学会天然气专业委员会, 2020: 2047-2054.

    LIU Haoqi, LIU Bo, HU Zhiguo, et al. Analysis of blockage causes and prevention measures for high-sulfur gas wells in Dachangping Changxing formation[C]//The 32nd National Natural Gas Academic Annual Conference. Chongqing: Natural Gas Professional Committee of China Petroleum Society, 2020: 2047-2054.
    [17] 万里平, 姚金星, 李皋, 等. 元坝气田X1井井筒堵塞原因分析[J]. 长江大学学报(自然科学版), 2021, 18(2): 62-68.

    WAN Liping, YAO Jinxing, LI Gao, et al. Analysis of causes of shaft blockage in well X1 of Yuanba gas field[J]. Journal of Yangtze University (Natural Science Edition), 2021, 18(2): 62-68.
    [18] 刘方检. 普光气田生产井油管堵塞原因及对策研究[D]. 成都: 西南石油大学, 2019.

    LIU Fangjian. Research on the causes and countermeasures of tubing clogging in production wells of Puguang gas field[D]. Chengdu: Southwest Petroleum University, 2019.
    [19] 李树达. 普光高含硫气井井筒解堵技术优化研究及应用[D]. 青岛: 中国石油大学(华东), 2021.

    LI Shuda. Optimization research and application of wellbore blockage removal technology for high hydrogen sulfide gas well in puguang gas field[D]. Qingdao: College of Petroleum Engineering China University of Petroleum (East China), 2021.
    [20] 叶颉枭, 张华礼, 李松, 等. 川东石炭系低压气井解堵工艺研究与应用[J]. 石油与天然气化工, 2021, 50(3): 71-74,84.

    YE Jiexiao, ZHANG Huali, LI Song, et al. Research and application of blockage removal technology for low-pressure gas well in eastern Sichuan Carboniferous formation[J]. Chemical Engineering of Oil and Gas, 2021, 50(3): 71-74,84.
    [21] 陈大钧, 冯丹阳, 刘丹宇, 等. 龙岗礁滩气藏主干井气井堵塞机理[J]. 钻井液与完井液, 2013, 30(6): 13-16. doi: 10.3969/j.issn.1001-5620.2013.06.004

    CHEN Dajun, FENG Danyang, LIU Danyu, et al. Mechanism of gas well blockage in main wells of Longgang reef-flat gas reservoir[J]. Drilling Fluid & Completion Fluid, 2013, 30(6): 13-16. doi: 10.3969/j.issn.1001-5620.2013.06.004
    [22] 马天寿, 张东洋, 陈颖杰, 等. 基于神经网络模型的水平井破裂压力预测方法[J]. 中南大学学报(自然科学版), 2024, 55(1): 330-345.

    MA Tianshou, ZHANG Dongyang, CHEN Yingjie, et al. Fracture pressure prediction method of horizontal well based on neural network model[J]. Journal of Central South University (Science and Technology), 2024, 55(1): 330-345.
    [23] ZHAO G, DING W L, TIAN J, et al. Spearman rank correlations analysis of the elemental, mineral concentrations, and mechanical parameters of the lower Cambrian Niutitang shale: a case study in the Fenggang block, Northeast Guizhou province, South China[J]. Journal of Petroleum Science and Engineering, 2022, 208, Part C: 109550.
    [24] 李芋池, 罗明良, 战永平, 等. 低腐蚀自生热冻胶压裂液流变性能及反应动力学研究[J]. 钻井液与完井液, 2025, 42(1): 117-126.

    LI Yuchi, LUO Mingliang, ZHAN Yongping, et al. Study on rheology and reaction kinetics of low corrosion self-heating gelling fracturing fluids[J]. Drilling Fluid & Completion Fluid, 2025, 42(1): 117-126
    [25] 巩泽文, 贾建称, 许耀波, 等. 基于测井信息的煤层顶板水平井抽采煤层气技术[J]. 天然气工业, 2021, 41(2): 83-91.

    GONG Zewen, JIA Jianchen, XU Yaobo, et al. The coal seam roof strata-in horizontal well CBM gas drainage technology based on logging information[J]. Natural Gas Industry, 2021, 41(2): 83-91.
    [26] 游利军, 邹俊, 康毅力, 等. 裂缝性致密变质岩气藏钻井液漏失损害机理[J]. 钻井液与完井液, 2024, 41(6): 719-727.

    YOU Lijun, ZOU Jun, KANG Yili, et al. Mechanisms of formation damage by lost drilling fluids in fractured tight metamorphic rock gas reservoirs[J]. Drilling Fluid & Completion Fluid, 2024, 41(6): 719-727.
    [27] Jafarifar I, Simi A, Abbasi I, et al. Application of soft computing approaches for modeling annular pressure loss of slim-hole wells in one of Iranian central oil fields[J]. Soft Computing, 2023(21): 16125-16142.
    [28] FERNANDES M A, GILDIN E, SAMPAIO M A. Data-driven estimation of flowing bottom-hole pressure in petroleum wells using long short-term memory[C]//2024 International Conference on Machine Learning and Applications. Miami, FL, USA: IEEE, 2024: 1530-1537. DOI: 10.1109/ICMLA61862.2024.00236.
    [29] ZHAO G, DING W L, TIAN J, et al. Spearman rank correlations analysis of the elemental, mineral concentrations, and mechanical parameters of the lower Cambrian Niutitang shale: a case study in the Fenggang block, northeast Guizhou province, south China[J]. Journal of Petroleum Science and Engineering, 2022, 208, Part C: 109550.
    [30] 何瑞兵, 谭伟雄, 白瑞婷, 等. 高温致密砂砾岩储层盐敏及盐析损害机理[J]. 钻井液与完井液, 2024, 41(2): 155-165. doi: 10.12358/j.issn.1001-5620.2024.02.003

    HE Ruibing, TAN Weixiong, BAI Ruiting, et al. Formation damage in high temperature dense glutenite reservoirs by salt sensitivity and salt precipitation[J]. Drilling Fluid & Completion Fluid, 2024, 41(2): 155-165. doi: 10.12358/j.issn.1001-5620.2024.02.003
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  25
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-13
  • 修回日期:  2025-06-19
  • 刊出日期:  2025-09-30

目录

    /

    返回文章
    返回