Progresses in Researching Phase Change Materials for Drilling Fluid Cooling
-
摘要: 随着国内非常规油气资源向着深井、超深井探索求产,钻井液、井下工具、探测仪器承受的地层温度越来越高,亟需高效的降温技术。当前钻井液降温方式主要包括自然冷却、地面冷却装置等,降温效果有限。相变材料凭借其储热密度大、相变温度可调控等优势,可在特定井段实现温度响应,在旋转导向、随钻测井等高价值井下仪器附近精准冷却,因此成为钻井液降温技术的研究热点。相变材料现已广泛应用于太阳能光热存储、建筑物调节温度、电子设备热管理等领域,但对于深井、超深井钻探领域,仍处于初步探索阶段。重点论述了相变材料的分类、中高温相变材料的研究现状、相变材料用于钻井液的性能要求及现有文献用于钻井液降温领域的应用研究。未来可结合数值模拟与现场试验,开发高导热、低成本的相变材料,加强其多功能设计,优化其与钻井液的配伍性,探索兼具降温、润滑、地层保护等功能的环保、高效、稳定、智能化的新型相变材料,为钻井液技术提供创新解决方案。Abstract: As wells are drilled deeper and deeper to explore nonconventional oil and gas resources, drilling fluids, downhole tools and detection instrument are experiencing higher formation temperatures, and high efficiency cooling technology is urgently required. The methods of cooling a drilling fluid presently in use include natural cooling and cooling with surface instrument, whose cooling effect is limited. Phase change materials have advantages of high heat storage density and adjustable phase change temperature, hence can be used in a specific well section to achieve temperature response. With phase change materials, precise cooling in a depth near a downhole device such as RSD and LWD can be achieved, and phase change materials are thus becoming the research hotspot in drilling fluid cooling technology. Presently phase change materials though have been widely used in photothermal storage of solar energy, building temperature regulation as well as heat management for electronic devices etc., their use in deep and ultra-deep well drilling and exploration is still in an initial exploration stage. This paper focuses on the classification of phase change materials, the research status of medium and high temperature phase change materials, the properties of phase change materials required for use in drilling fluids, as well as the existing literatures on application studies of drilling fluid cooling. In the future, cost effective phase change materials of high thermal conductivity can be developed through numerical simulation and field test. By strengthening multifunction design of these phase change materials, optimizing their compatibility with drilling fluids, and investigating environmentally friendly, highly efficient, stable and intelligent new phase change materials with multiple functions such as cooling, lubricating and reservoir protection etc., an innovative solution to drilling fluid technology can be developed.
-
Key words:
- Oil and gas field development /
- Drilling fluid /
- Phase change material /
- Cooling
-
图 1 “溶剂蒸发-加热固化”法制备高温微胶囊相变材料示意图[19]
图 3 新型超分子多孔相变材料制备过程示意图[29]
表 1 相变材料的分类
分类依据 类型 特点 典型材料 应用领域 应用温度 低温型 相变温度小于100℃ 石蜡、水合盐、脂肪酸 建筑节能、电子设备热管理、
冷链运输中温型 相变温度100℃~200℃ 熔融盐、聚乙二醇 太阳能中温储热、工业余热回收 高温型 相变温度大于200℃ 金属合金、陶瓷复合材料 太阳能热发电、高温工业储热 相变前后
物质形态固-固 相变过程体积变化小、
热循环稳定性好、无泄漏
风险,但潜热较低多元醇、层状钙钛矿 建筑节能、电子设备热管理、
特种纺织品、医疗热疗固-液 潜热大、选择范围广,
需解决封装和过冷问题石蜡、脂肪酸类、水合盐 建筑节能、太阳能热储存、冷链物流、工业余热回收、农业温室 固-气 潜热高,但体积变化大,
实际应用受限升华性物质 特定制冷/低温场合 液-气 相变潜热巨大、气相体积变化大,需要密闭高压系统 氟利昂、液态单体 热管技术、蒸汽发电、制冷循环 成分组成 无机相变
材料潜热高、导热率较高、
价格低廉,但易过冷、
相分离、部分有腐蚀性水合盐、熔融盐 建筑节能、太阳能热储存、
冷链物流有机相变
材料相变可逆性好、无过冷、
化学性质稳定、循环性好,
但导热率低、部分易燃烷烃、多元醇、脂肪酸 太阳能热储存、工业余热回收、
农业温室复合相变
材料综合无机高潜热与有机稳定性、导热性改善、解决泄漏等问题,但工艺复杂、成本较高 有机-无机复合、多孔载体复合、导热增强复合 高效电子散热、
航空航天热管理金属相变
材料超高导热率、高温稳定性、
潜热密度大,但密度大、
成本高、液态腐蚀性强低熔点合金、共晶合金 极端环境热管理、高功率电子
散热[12]、核反应堆余热储存、
高温工业过程储热制备方法 微胶囊化
技术PCM包裹在聚合物/无机壳中,不易泄漏、传热面积大、
但成本高、包覆率有限石蜡微胶囊、
二氧化硅纳米胶囊智能调温纺织品、
建筑保温砂浆、医疗恒温敷料、
电子散热膏多孔载体
吸附PCM渗入多孔材料,防泄漏、抑制相分离,但吸附率
较低、潜热降低石蜡/膨胀石墨、脂肪酸/硅藻土、熔融盐/多孔陶瓷 建筑储能板材、工业余热回收
模块、太阳能集热器储热芯共混定型 PCM与高分子/添加剂熔融共混后定型,工艺简单、成本低、易加工,但易渗漏 石蜡/高密度聚乙烯、
聚乙二醇/环氧树脂相变储能地板、冷链保温箱、
食品包装膜静电纺丝 PCM与聚合物溶液纺丝成纳米纤维膜,柔性好、比表面积大、响应快,但负载量低、
量产难度大石蜡/聚丙烯腈纤维、月桂酸/聚乙烯醇纳米纤维膜 智能调温服装、可穿戴电子
散热贴片、医疗绷带溶胶-凝胶法 PCM在溶胶网络中凝胶化定型,纳米级分散、热稳定性好,但工艺复杂、干燥
收缩易开裂水合盐/二氧化硅凝胶、脂肪酸/氧化铝气凝胶复合体 智能调温服装、可穿戴电子
散热贴片、医疗绷带 -
[1] 佚名. 全球油气储量报告[J]. 油气杂志(OGJ), 2022, 12.Anon. Global oil and gas reserves report[J]. Oil and Gas Journal (OGJ), 2022, 12. [2] 张鹏程. 美国《油气杂志》2021年终盘点: 全球石油产量和油气储量[J]. 世界石油工业, 2022, 29(1): 76.ZHANG Pengcheng. US oil&gas magazine's 2021 year-end review: global oil production and oil and gas reserves[J]. World Petroleum Industry, 2022, 29(1): 76. [3] 姚宁平, 王毅, 姚亚峰, 等. 我国煤矿井下复杂地质条件下钻探技术与装备进展[J]. 煤田地质与勘探, 2020, 48(2): 1-7. doi: 10.3969/j.issn.1001-1986.2020.02.001YAO Ningping, WANG Yi, YAO Yafeng, et al. Progress of drilling technologies and equipments for complicated geological conditions in underground coal mines in China[J]. Coal Geology & Exploration, 2020, 48(2): 1-7. doi: 10.3969/j.issn.1001-1986.2020.02.001 [4] 张运东, 方辉, 刘帅奇, 等. 深地油气勘探开发技术发展现状与趋势[J]. 世界石业, 2023, 30(6): 12-20.ZHANG Yundong, FANG Hui, LIU Shuaiqi, et al. Current status and trends of deep oil and gas exploration and development technologies[J]. World Petroleum Industry, 2023, 30(6): 12-20. [5] 马青芳. 钻井液冷却技术及装备综述[J]. 石油机械, 2016, 44(10): 42-46.MA Qingfang. Discussion on drilling fluid cooling technology and equipment[J]. China Petroleum Machinery, 2016, 44(10): 42-46. [6] 崔海亭, 杨峰. 储热技术及其应用[M]. 北京: 化学工业出版社, 2004.CUI Haiting, YANG Feng. Thermal energy storage technology and its application[M]. Beijing: Chemical Industry Press, 2004. [7] 王鑫, 方建华, 刘坪, 等. 相变材料的研究进展[J]. 功能材料, 2019, 50(2): 70-75. doi: 10.3969/j.issn.1001-9731.2019.02.011WANG Xin, FANG Jianhua, LIU Ping, et al. Research progress of phase change materials[J]. Journal of Functional Materials, 2019, 50(2): 70-75. doi: 10.3969/j.issn.1001-9731.2019.02.011 [8] 杜洪韬. 深水钻井井筒热效应研究[D]. 荆州: 长江大学, 2018.DU Hongtao. Research on thermal effect of deepwater drilling wellbore[D]. Jingzhou: Yangtze University, 2018. [9] 易灿, 闫振来, 郭磊. 井下循环温度及其影响因素的数值模拟研究[J]. 石油钻探技术, 2007, 35(6): 47-49. doi: 10.3969/j.issn.1001-0890.2007.06.013YI Can, YAN Zhenlai, GUO Lei. Numerical simulation of circulating temperature and it's impacting parameters[J]. Petroleum Drilling Techniques, 2007, 35(6): 47-49. doi: 10.3969/j.issn.1001-0890.2007.06.013 [10] 司西强, 王中华. 钻井液用磺化胺基烷基糖苷高效润滑剂的研制及性能[J]. 应用化工, 2022, 51(8): 2323-2326. doi: 10.3969/j.issn.1671-3206.2022.08.030SI Xiqiang, WANG Zhonghua. Preparation and properties of sulfonated amino alkyl polyglucoside used as high efficiency lubricant in drilling fluids[J]. Applied Chemical Industry, 2022, 51(8): 2323-2326. doi: 10.3969/j.issn.1671-3206.2022.08.030 [11] 苏俊霖, 蒲晓林, 任茂, 等. 抗高温无机/有机复合纳米降滤失剂室内研究[J]. 断块油气田, 2012, 19(5): 626-628. doi: 10.6056/dkyqt201205020SU Junlin, PU Xiaolin, REN Mao, et al. Research on inorganic/organic composite-nano fluid loss additive resistant to high temperature[J]. Fault-Block Oil and Gas Field, 2012, 19(5): 626-628. doi: 10.6056/dkyqt201205020 [12] 徐晓明. 动力电池热管理技术——散热系统热流场分析[M]. 北京: 机械工业出版社, 2018.XU Xiaoming. Power battery thermal management technology: thermal flow field analysis of cooling system[M]. Beijing: China Machine Press, 2018. [13] 折晓会, 王星宇, 郭晓龙, 等. 超低温-高温跨温区相变材料制备及物性调控综述[J]. 储能科学与技术, 2023, 12(12): 3818-3835.SHE Xiaohui, WANG Xingyu, GUO Xiaolong, et al. A review on the preparation of ultra-low-temperature, high-temperature, and cross-temperature zone phase change materials and the regulation of physical properties[J]. Energy Storage Science and Technology, 2023, 12(12): 3818-3835. [14] SAHER S, JOHNSTON S, ESTHER-KELVIN R, et al. Trimodal thermal energy storage material for renewable energy applications[J]. Nature, 2024, 636(8043): 622-626. doi: 10.1038/s41586-024-08214-1 [15] 卢尧, 吴学航. 钠离子电池镍锰基正极材料的界面改性研究[J]. 广西大学学报(自然科学版), 2023, 48(5): 1258-1273.LU Yao, WU Xuehang. Interfacial modification of nickel-manganese based cathode materials for sodium-ion batteries[J]. Journal of Guangxi University (Natural Science Edition), 2023, 48(5): 1258-1273. [16] 赫娜, 冯国会, 王天雨. 基于PCM的太阳能储能水箱研究进展[J]. 工程科学学报, 2023, 45(10): 1795-1806.HE Na, FENG Guohui, WANG Tianyu. Research progress on solar energy storage water tanks based on phase-change materials[J]. Chinese Journal of Engineering, 2023, 45(10): 1795-1806. [17] 李晓杰, 罗清海, 李光辉, 等. 太阳能相变蓄热炕的实验及数值模拟研究[J]. 南华大学学报(自然科学版), 2024, 38(1): 10-20,45.LI Xiaojie, LUO Qinghai, LI Guanghui, et al. Experimental and numerical simulation research on solar phase change heat storage Kang[J]. Journal of University of Souht China (Science & Technology), 2024, 38(1): 10-20,45. [18] LUO R R, LEI H, SHAO F L, et al. Graphene-pentaerythritol solid–solid phase change composites with high photothermal conversion and thermal conductivity[J]. Solar Energy, 2022, 241: 54-62. doi: 10.1016/j.solener.2022.05.053 [19] WANG K C, ZHANG T Y, WANG T Y, et al. Microencapsulation of high temperature metallic phase change materials with SiCN shell[J]. Chemical Engineering Journal, 2022, 436: 135054. doi: 10.1016/j.cej.2022.135054 [20] JIANG Y, WANG Q, TIAN S S, et al. Fluoride microcapsules with high phase change temperature[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 653: 130028. doi: 10.1016/j.colsurfa.2022.130028 [21] 龙伟月. 脂肪酸相变单元熔化过程传热特性研究及结构优化[D]. 成都: 西南交通大学, 2017.LONG Weiyue. Research on heat transfer characteristics and structural optimization of the melting process of fatty acid phase change units[D]. Chengdu: Southwest Jiaotong University, 2017. [22] 满凯. 复合相变材料在建筑混凝土中的应用分析[J]. 新材料新装饰, 2024, 6(16): 18-20.MAN Kai. Analysis of the application of composite phase change materials in building concrete[J]. New Material New Decoration, 2024, 6(16): 18-20. [23] 刘均一, 陈二丁, 李光泉, 等. 基于相变蓄热原理的深井钻井液降温实验研究[J]. 石油钻探技术, 2021, 49(1): 53-58. doi: 10.11911/syztjs.2020131LIU Junyi, CHEN Erding, LI Guangquan, et al. Experimental study of drilling fluid cooling in deep wells based on phase change heat storage[J]. Petroleum Drilling Techniques, 2021, 49(1): 53-58. doi: 10.11911/syztjs.2020131 [24] YU A P, RAMESH P, ITKIS M E, et al. Graphite nanoplatelet−epoxy composite thermal interface materials[J]. Journal of Physical Chemistry C, 2007, 111(21): 7565-7569. doi: 10.1021/jp071761s [25] 王成文, 熊超, 陈泽华, 等. 高温钻井液主动降温用耐高温高压微球制备方法及其应用: CN, 115491183A[P]. 2022-09-22.WANG Chengwen, XIONG Chao, CHEN Zehua, et al. Preparation method and application of high-temperature and high-pressure microspheres for active cooling of high-temperature drilling fluid: CN, 115491183A[P]. 2022-09-22. [26] 孙金声, 章超, 黄贤斌, 等. 一种超深层钻井液用双壳层高导热相变储热微胶囊及其制备方法与应用: CN119193120A[P]. 2024-09-20.SUN Jinsheng, ZHANG Chao, HUANG Xianbin, et al. A bi-shell high-thermal conductivity phase change heat storage microcapsule for ultra-deep drilling fluid and preparation method and application: CN119193120A[P]. 2024-09-20. [27] GUO P F, QIU Z S, ZHANG Y B, et al. Preparation and characterization of phase change microcapsules for improving the applicable temperature and stability of high temperature resistant drilling fluids[J]. Chemical Engineering Research and Design, 2024, 201: 389-398. doi: 10.1016/j.cherd.2023.11.054 [28] 李美春, 李子燕, 孙金声, 等. 一种钻井液降温用相变胶囊及其制备方法与应用: CN117701255A[P]. 2024-02-06.LI Meichun, LI Ziyan, SUN Jinsheng, et al. A phase change capsule for cooling drilling fluid and its preparation method and application: CN117701255A[P]. 2024-02-06. [29] KANG J X, WANG H H, ZOU C J, et al. Supramolecular porous phase change materials for encapsulation of nitrate with amino-expanded graphite by cucurbit[7]uril[J]. Journal of Cleaner Production, 2024, 474: 143632. doi: 10.1016/j.jclepro.2024.143632 [30] ZHANG Q, LI Y F, WANG Y, et al. Synthesis of size-controllable Erythritol@TiO2 phase change microcapsules and application in cooling of High-temperature drilling fluids[J]. Journal of Energy Storage, 2025, 112: 115294. doi: 10.1016/j.est.2025.115294 [31] ZHANG H R, SU Y N, LIAO M L, et al. Thermal management of drilling fluids with phase change materials in ultra-high temperature wells[J]. Applied Thermal Engineering, 2025, 274, Part A: 126601. [32] 赵立强, 张楠林, 张以明, 等. 自支撑相变压裂技术室内研究与现场应用[J]. 天然气工业, 2020, 40(11): 60-67.ZHAO Liqiang, ZHANG Nanlin, ZHANG Yiming, et al. Laboratory study and field application of self-propping phase-transition fracturing technology[J]. Natural Gas Industry, 2020, 40(11): 60-67. -