Progresses in Drilling Fluid Calcium Resistant Agent Researches in China and Abroad in Recent Ten Years
-
摘要: 国内外针对钻井液处理剂在高钙污染下性能大幅降低的难题,对降滤失剂、增黏剂、抑制剂、润滑剂及降黏剂等开展了大量的研究,进一步提升处理剂的抗钙性能,虽然出现抗钙25%时抗温达150℃、抗钙11%时抗温180℃的产品,且部分产品成功应用于现场。但多数处理剂研究还限于室内,且仍存在抗温抗钙性能还不能同时兼顾的问题,尤其在抗钙含量大于200 000 ppm(≥20%氯化钙)的处理剂研究不多。今后抗钙处理剂的研究要在着重将室内研究成果尽快转化的基础上提高抗温抗钙同时兼顾的能力,还要进一步利用价廉易得的天然材料,开发基于生物质资源的低成本处理剂;同时要在分子结构设计上突破传统结构,采用支化或星形、树枝状或树形结构的抗钙聚合物材料,注重新单体研发,新材料的引入,并结合材料科学领域AI技术,进一步提升处理剂抗温抗钙能力、提高研发效率及处理剂现场应用的适配性。Abstract: Drilling fluid additives function less effectively or even lose their functions at high calcium content. To deal with this problem, many researchers, both in China and from abroad, tried to improve the calcium resistance of drilling fluids and have made some progresses. These researches were mainly focused on filter loss reducers, viscosifiers, shale inhibitors, lubricants as well as thinners. Products resistant to contamination by 25% calcium at 150℃ and resistant to contamination by 11% calcium at 180℃ have been developed. Part of these products have been successfully used in field operations, most of the additives are still in laboratory research though, and are still having difficulties in simultaneously possessing good calcium resistance and high temperature stability. Drilling fluid additives capable of resisting contamination by greater than 200,000 ppm calcium (≥ 20% calcium chloride) are rarely seen. In studying calcium resistant drilling fluid additives, focus should be placed on the prompt conversion of the laboratory research achievements, and cost-effective additives with both good calcium resistance and high temperature stability should be developed from low-cost and easily available biomass resources. In designing the molecular structures of polymer drilling fluid additives, special molecular structures instead of only the traditional ones, such as branched polymers, star polymers and dendrimers should be used. Attentions should be paid to the development of new monomers and the introduction of new materials. AI technology in material science can also be used to help further increase the high temperature stability and calcium resistance, enhance the development efficiency, and improve the compatibility of the drilling fluid additives.
-
表 1 阴离子聚合物
名 称 组成或制备方法 性能与应用 文 献 三元共聚物PAAV AM、AMPS、VP(4-乙烯基吡啶)
自由基聚合法共聚合成含20%CaCl2的4%膨润土浆中加量
为1%,API滤失量为8.2 mL,表观黏度
23.5 mPa·s,抗温150℃[25] 有机-无机复合降
滤失剂CARF-1AM、AMPS、MBA为原料,与一种
纳微米无机矿物共聚得到8%CaCl2的3%膨润土浆中加量为2%,API滤失量为9.8 mL,抗温150℃;
含0.75%CaCl2的复合盐水浆中加量为2.5%,150℃老化后API滤失量9.6 mL[26] 聚丙烯酰胺/氧化石墨烯
复合材料PAAN-G以氧化石墨烯为核心材料,
与AM、NVP、AMPS共聚得到4%膨润土浆中加量2%,抗温240℃,
抗钙25%,150℃老化后表观黏度
22.5 mPa·s,API滤失量15.2 mL[27] 增黏型降滤失剂DSP-1 AMPS、AM、AA、AN
(丙烯腈)/NIPAM(N-异丙基丙烯酰胺)
为原料,采用自由基聚合制备抗钙1.37%,抗温120℃,高温后表观黏度80 mPa·s,API滤失量2.4 mL,HTHP滤失量12 mL。应用于土库曼斯坦阿姆河右岸
基尔桑气田Gir-24D井,保障顺利施工[28] 核-壳结构的纳米
复合材料CSNC纳米CaCO3、AM、AMPS、AA为原料,MBA为交联剂,通过单体之间的交联
聚合物为壳,反向乳液聚合法制得4%膨润土浆中加量1%,0.5%CaCl2
污染下200℃老化后API滤失量20 mL,
滤失率降低86.9%[29] 抗温耐盐降滤失剂LX-28 AM、AMPS、AA、NVP为原料
共聚得到含0.5%CaCl2复合盐水基浆中加量1.5%,120℃老化后API滤失量5.2 mL [30] 改性纳米碳酸钙降滤失剂 纳米碳酸钙为原料,采用偶联剂
改性后,接枝非离子单体NM-3、
阴离子单体AM-3得到含0.5%CaCl2的4%膨润土浆中
加量1.5%,150℃老化后表观黏度
18.5 mPa·s,API滤失量6.4 mL[31] 降滤失剂WL-1 以AM、AMPS、改性土共聚合成 在含0.74%CaCl2复合盐水基浆中加量1.5%,180℃老化后API滤失量7.2 mL。
应用于的泌阳区块泌432、泌431、
泌73-4井,加量0.3%条件下滤失量
在5 mL以内,满足现场钻井施工要求[32] 纳米降滤失剂 以AM、AMPS、NVP和改性纳米
二氧化硅(M-SiO2)为原料,反
乳液聚合法制备在含有1%CaCl2的淡水基浆中加入1%,
表观黏度12 mPa·s,API滤失量为11.8 mL[33] 增黏降滤失剂 过硫酸钾/亚硫酸氢钠为引发剂,
AM、AMPS、AA为原料,
采用水溶液聚合法制备4%膨润土浆中加量为1.5%,10%NaCl、4%CaCl2污染下180℃老化后表观黏度
13 mPa·s,API滤失量9.1 mL,黏度
保持率为52%[34] 梳型聚合物降滤失剂DMP-1 以APEC-400(烯丙基聚氧
乙烯醚400)、AM、AMPS为原料,
采用水溶液聚合法得到应用于涪陵地区泰来201井、永兴1井三
开盐膏层段及四开高温井段,有效
降低失水量,保证了安全施工[35] 表 2 两性离子聚合物
名 称 组成或制备方法 性能与效果 文献 梳状共聚物降滤失剂 以AMPS、NVP、SSS、APEG
(烯丙基聚氧乙烯醚)合成4%膨润土浆中加量2%时,200℃老化后API滤失量10 mL;10%NaCl和1%CaCl2的污染下,180℃老化后API滤失量15 mL [36] 五元共聚物降
滤失剂DAADS以AM、AMPS、DMDAAC、DMAM、SAS(烯丙基磺酸钠)为原料,
通过自由基水溶液共聚含1%CaCl2及含饱和盐基浆、1%CaCl2
两种基浆中加量2%时,180℃老化后API
滤失量分别为6.8 mL和16.8 mL[37] 两性聚合物ADD 以AMPS、AM、DMDAAC
为原料共聚得到4%膨润土浆中加量1.5%,11.1%CaCl2
污染下150℃老化后API滤失量9.6 mL[38] 成膜降滤失剂GOJ-1 以氧化石墨烯、AM、AMPS、DMDAAC、VAC(醋酸乙烯酯)
为原料制得含2%CaCl2膨润土浆中加量1%,
150℃老化后API滤失量9 mL[39] 改性二氧化硅降滤失剂 以改性二氧化硅、AM、AMPS、DMDAAC为原料制得 含0.5%CaCl2复合盐水基浆加量2.5%,150℃老化API滤失量4.0 mL [40] 三元共聚物PASV 以2,2'-偶氮-双(2-甲基丙脒)盐酸(AAPH/V-50)为引发剂引发AM/AMPS/VeiBr
(1-乙烯基-3-乙基咪唑溴)共聚得到4%膨润土浆中加量4%,11%CaCl2污染下,180℃老化后API滤失量10 mL [41] 抗高温耐盐聚合物降滤失剂 以SSS、AMPS、AM为原料,
自由基聚合得到含3%CaCl2的4%膨润土浆中加量
1.8%时,API滤失量11.0 mL[42] 降滤失剂KJC 以SSS、AM、APEG共聚得到单体配比m(APEG)∶(AM)∶(SSS)=1∶2∶1,
反应温度为60℃,引发剂质量分数
(占单体质量数)为0.7%,反应时间5 h含5%CaCl2的4%膨润土浆中加量1.6%,API滤失量15.7 mL,抗温180℃ [43] 水溶性两性离子
聚合物降滤失剂以MAA(甲基丙烯酸)、AM、
SSS、DMDAAC为原料共聚得到含0.15%CaCl2的4%膨润土浆中加量1.5%,API滤失量为17.4 mL,抗温达200℃ [44] 抗高温抗高盐钙乳液
降滤失剂 GB-1AMPS/DMAA/NVP/DMDAAC四元共聚得到 ,质量比 5∶1∶1∶3,引发剂过硫酸钾
加量 0.5%,pH =7,反应温度 70℃,
通氮气反应时间5 h含1.2 %CaCl2的4%膨润土浆中加量2%,180℃老化后API滤失量8 mL,
表观黏度34 mPa·s[45] -
[1] 鄢捷年. 钻井液工艺学[M]. 东营: 石油大学出版社, 2001.YAN Jienian. Drilling fluid technology[M]. Dongying: Petroleum University Press, 2001. [2] WILLIAM D, D'AUGEREAU K, HANSEN N, et al. New water-based mud balance shigh-performance drilling and environmental compliance[J]. SPE Drilling & Completion, 2006, 21(4):255-267. [3] ZHANG J G, CHENVERT M E, AL-BAZALIT T, et al. A new gravimetric-swelling test for evaluating water and ion uptake in shales[C]//the SPE Annual Technical Conference and Exhibition. Houston, Texas: SPE, 2004: SPE-89831-MS. [4] 谢俊, 马诚, 王中华, 等. 氯化钙水基钻井液体系现状及展望[J]. 精细石油化工进展,2015,16(1):28-31. doi: 10.3969/j.issn.1009-8348.2015.01.008XIE Jun, MA Cheng, WANG Zhonghua, et al. Status quo and Prospect of calcium chloride water-based drilling fluid system[J]. Advances in Fine Petrochemicals, 2015, 16(1):28-31. doi: 10.3969/j.issn.1009-8348.2015.01.008 [5] 王中华. AMPS/AM共聚物的合成[J]. 河南化工,1992(7):7-11.WANG Zhonghua. Synthesis of AMPS/AM copolymer[J]. Henan Chemical Industry, 1992(7):7-11. [6] 王中华, 杜宾海, 尹新珍. 2-丙烯酰胺基-2-甲基丙磺酸的合成[J]. 化工时刊,1995(8):3-9.WANG Zhonghua, DU Binhai, YIN Xinzhen. Synthesis of 2-acrylamido-2-methylpropanesulfonic acid[J]. Chemical Industry Times, 1995(8):3-9. [7] 杨小华, 王中华. 2-丙烯酰胺基-2-甲基丙磺酸的合成[J]. 精细石油化工进展,2003,4(8):33-35. doi: 10.3969/j.issn.1009-8348.2003.08.011YANG Xiaohua, WANG Zhonghua. Synthesis of 2-acrylamido-2-methylpropanesulfonic acid[J]. Advances in Fine Petrochemicals, 2003, 4(8):33-35. doi: 10.3969/j.issn.1009-8348.2003.08.011 [8] 杨小华, 王中华. 国内AMPS类聚合物研究与应用进展[J]. 精细石油化工进展,2007,8(1):14-22. doi: 10.3969/j.issn.1009-8348.2007.01.005YANG Xiaohua, WANG Zhonghua. Advances in preparation and Uses of AMPS polymer in China[J]. Advances in Fine Petrochemicals, 2007, 8(1):14-22. doi: 10.3969/j.issn.1009-8348.2007.01.005 [9] 杨小华. 国内近5年钻井液处理剂研究与应用进展[J]. 油田化学,2009,26(2):210-217.YANG Xiaohua. Advances in preparation and Uses of drilling fluid additives in China in recent 5 years[J]. Oilfield Chemistry, 2009, 26(2):210-217. [10] 杨小华, 王中华, 张麒麟. AMPS聚合物及钻井液体系研究与应用[J]. 石油与天然气化工,2001,30(3):138-140. doi: 10.3969/j.issn.1007-3426.2001.03.012YANG Xiaohua, WANG Zhonghua, ZHANG Qilin. Research and application of amps copolymers drilling fluids system[J]. Chemical Engineering of Oil and Gas, 2001, 30(3):138-140. doi: 10.3969/j.issn.1007-3426.2001.03.012 [11] 杨小华. 丙烯酰胺类聚合物的研究与应用[J]. 精细石油化工,2000(4):48-51. doi: 10.3969/j.issn.1003-9384.2000.04.015YANG Xiaohua. The researches and uses of acrylamide copolymer[J]. Speciality Petrochemicals, 2000(4):48-51. doi: 10.3969/j.issn.1003-9384.2000.04.015 [12] 魏君, 于洪江, 王和良, 等. 复合变性淀粉降滤失剂的合成与评价[J]. 应用化工,2017,46(1):197-198,202.WEI Jun, YU Hongjiang, WANG Heliang, et al. Synthesis and evaluation of composite modified starch filtrate reducer[J]. Applied Chemical Industry, 2017, 46(1):197-198,202. [13] 张坤, 马红, 舒儒宏, 等. 双酯化改性淀粉降滤失剂的研究与应用[J]. 钻井液与完井液, 2021, 38(2):142-145. doi: 10.3969/j.issn.1001-5620.2021.02.002ZHANG Kun, MA Hong, SHU Ruhong, et al. Study and application of a double esterified modified starch filter loss reducer[J]. Drilling Fluid & Completion Fluid, 2021, 38(2):142-145. doi: 10.3969/j.issn.1001-5620.2021.02.002 [14] 陈思琪. 钻井液用淀粉微球降滤失剂的研制[D]. 青岛: 中国石油大学(华东), 2020.CHEN Siqi. Development of starch microsphere filtrate reducer for drilling fluid[D]. Qingdao: China University of Petroleum, 2020. [15] 徐彩霞. 复合降滤失剂P(ST-g-ACA)/BT的制备及性能研究[D]. 西安: 西北大学, 2021.XU Caixia. Preparation and performance study of composite filter loss agent P (ST-g-ACA)/BT[D]. Xi'an: Northwest University, 2021. [16] 刘胜. 抗温环保降滤失剂的研制与应用[J]. 化学工程师,2023,37(3):96-100.LIU Sheng. Development and application of temperature-resistant and environment-friendly fluid loss reducer[J]. Chemical Engineer, 2023, 37(3):96-100. [17] 于洪江, 张美画, 王杨敏, 等. 抗温抗盐改性淀粉降滤失剂的合成与性能研究[J]. 化工技术与开发,2021,50(7):20-23. doi: 10.3969/j.issn.1671-9905.2021.07.006YU Hongjiang, ZHANG Meihua, WANG Yangmin, et al. Synthesis and properties of heat and salt resistant modified starch filter loss reducer[J]. Technology & Development of Chemical Industry, 2021, 50(7):20-23. doi: 10.3969/j.issn.1671-9905.2021.07.006 [18] 李靖. 环保型水基钻井液用抗温耐盐降滤失剂研究[D]. 北京: 中国石油大学(北京), 2018.LI Jing. Research on temperature and salt resistant filtrate reducer for environmentally friendly water-based drilling fluid[D]. Beijing: China University of Petroleum (Beijing), 2018. [19] 王杨敏. 醇胺改性淀粉降滤失剂的合成与性能研究[D]. 西安: 西安石油大学, 2020.WANG Yangmin. Synthesis and performance study of alcohol amine modified starch filter loss agent[D]. Xi'an: Xi'an Shiyou University, 2020. [20] 朱文茜, 郑秀华. 反相乳液聚合法制备改性淀粉降滤失剂及其性能[J]. 钻井液与完井液,2021,38(1):27-34. doi: 10.3969/j.issn.1001-5620.2021.01.005ZHU Wenqian, ZHENG Xiuhua. The development of a modified starch through inverse phase emulsion copolymerization and its performance as a filter loss reducer[J]. Drilling Fluid & Completion Fluid, 2021, 38(1):27-34. doi: 10.3969/j.issn.1001-5620.2021.01.005 [21] 赵宝全. 抗温型纤维素的研制及在环保型水基钻井液中的应用[D]. 青岛: 中国石油大学(华东), 2018.ZHAO Baoquan. Development of heat-resistant cellulose and its application in environmentally friendly water-based drilling fluid[D]. Qingdao: China University of Petroleum, 2018. [22] JIA X R, ZHAO X H, CHEN B, et al. Polyanionic cellulose/hydrophilic monomer copolymer grafted silica nanocomposites as HTHP drilling fluid-loss control agent for water-based drilling fluids[J]. Applied Surface Science, 2022, 578:152089. doi: 10.1016/j.apsusc.2021.152089 [23] 冷文龙. 腐殖酸改性环保型降滤失剂研制及作用机理研究[D]. 成都: 西南石油大学, 2020.LENG Wenlong. Research on the development and mechanism of humic acid modified environmentally friendly filter loss agent[D]. Chengdu: Southwest Petroleum University, 2020. [24] 王梦园, 薛曼, 梁梦佳, 等. 改性柚子皮降滤失剂的合成与评价研究[J]. 钻探工程,2024,51(3):84-93.WANG Mengyuan, XUE Man, LIANG Mengjia, et al. Synthesis and evaluation of modified pomelo peel fluid loss additives[J]. Drilling Engineering, 2024, 51(3):84-93. [25] CAO J, MENG L W, YANG Y P, et al. Novel acrylamide/2-acrylamide-2-methylpropanesulfonic acid/4-vinylpyridine terpolymer as an anti-calcium contamination fluid-loss additive for water-based drilling fluids[J]. Energy & Fuels, 2017, 11(31):11963-11970. [26] 王琳, 杨小华, 钱晓琳, 等. 抗高钙盐钻井液降滤失剂CARF-1合成及性能研究[J]. 化学工程师,2023,37(3):55-59,79.WANG Lin, YANG Xiaohua, QIAN Xiaolin, et al. Study on synthsis and properties of fluid loss reducer CARF-1 for high calcium salt drilling fluid[J]. Chemical Engineer, 2023, 37(3):55-59,79. [27] MA J Y, PANG S C, AN Y X. Deep eutectic solvents for enhancing the rheological behavior of polymers and clays in polymeric water-based drilling fluids[J]. Energy & Fuels, 2023, 37(6):4391-4400. [28] 王树永, 赵小平, 吕本正, 等. 一种低土相高密度抗钙钻井液体系[J]. 钻井液与完井液,2016,33(5):41-44.WANG Shuyong, ZHAO Xiaoping, LYU Benzheng, et al. A calcium tolerant high density low clay drilling fluid[J]. Drilling Fluid & Completion Fluid, 2016, 33(5):41-44. [29] ZHONG, H Y, LI S S, LIU W L, et al. Nano-CaCO3/AA-AM-AMPS cross-linked polymer core-shell structural nanocomposite as high temperature and high salt resistant filtration reducer in water-based drilling fluid[J]. Geoenergy Science and Engineering, 2023, 224:211590. doi: 10.1016/j.geoen.2023.211590 [30] 罗春芝, 向欢, 章楚君, 等. 抗温抗盐乳液聚合物降滤失剂的合成与评价[J]. 长江大学学报(自然科学版),2023,20(6):93-102.LUO Chunzhi, XIANG Huan, ZHANG Chujun, et al. Synthesis and evaluation of anti-temperature and anti-salt emulsion polymeric filtrate loss reducer[J]. Journal of Yangtze University (Natural Science Edition), 2023, 20(6):93-102. [31] 李昀坪. 抗高温环保型降滤失剂研制及其在钻井液中应用[D]. 青岛: 中国石油大学(华东), 2020.LI Yunping. Development of high temperature resistant and environmentally friendly filtrate reducer and its application in drilling fluid[D]. Qingdao: China University of Petroleum, 2020. [32] 田茂明. 钻井液用抗温抗盐聚合物降滤失剂的研发与应用[J]. 化工管理,2020(12):200-201. doi: 10.3969/j.issn.1008-4800.2020.12.128TIAN Maoming. Research and application of temperature and salt resistant polymer filtrate reducer for drilling fluid[J]. Chemical Enterprise Management, 2020(12):200-201. doi: 10.3969/j.issn.1008-4800.2020.12.128 [33] 祁由荣. 纳米降滤失剂在页岩储层水基钻井液中的应用[D]. 北京: 中国石油大学(北京), 2019.QI Yourong. Application of nano filtration reducer in water-based drilling fluid for shale reservoirs[D]. Beijing: China University of Petroleum (Beijing), 2019. [34] 刘晓东, 吴宇, 鄢佳荣, 等. 三元共聚物增黏降滤失剂的制备及性能评价[J]. 化学工程师, 2024, 38(5):58-61,68.LIU Xiaodong, WU Yu, YAN Jiarong, et al. Preparation and performance evaluation of terpolymer viscosity increasing and fluid loss reducing agent[J]. Chemical Engineer, 2024, 38(5):58-61,68. [35] 徐运波, 蓝强, 张斌, 等. 梳型聚合物降滤失剂的合成及其在深井盐水钻井液中的应用[J]. 钻井液与完井液,2017,34(1):33-38. doi: 10.3969/j.issn.1001-5620.2017.01.006XU Yunbo, LAN Qiang, ZHANG Bin, et al. Synthesis and application of a comb polymer filter loss reducer in deep well saltwater drilling fluid[J]. Drilling Fluid & Completion Fluid, 2017, 34(1):33-38. doi: 10.3969/j.issn.1001-5620.2017.01.006 [36] LIU D X, YAN Y C, BAI G, et al. Mechanisms for stabilizing and supporting shale fractures with nanoparticles in Pickering emulsion[J]. Journal of Petroleum Science and Engineering, 2018, 164:103-109. doi: 10.1016/j.petrol.2018.01.048 [37] 王岩, 孙金声, 黄贤斌, 等. 抗高温耐盐钙五元共聚物降滤失剂的合成与性能[J]. 钻井液与完井液,2018,35(2):23-28. doi: 10.3969/j.issn.1001-5620.2018.02.003WANG Yan, SUN Jinsheng, HUANG Xianbin, et al. Synthesis and properties of a high temperature calcium and salt resistant quinary copolymer filter loss reducer[J]. Drilling Fluid & Completion Fluid, 2018, 35(2):23-28. doi: 10.3969/j.issn.1001-5620.2018.02.003 [38] LIU F, JIANG G, PENG S, et al. Amphoteric polymer as an anti-calcium contamination fluid-loss additive in water-based drilling fluids[J]. Energy & Fuels, 2016, 30(9):7221-7228. [39] 曲建峰. 钻井液用氧化石墨烯/聚合物成膜降滤失剂的研制[D]. 青岛: 中国石油大学(华东), 2018.QU Jianfeng. Development of graphene oxide/polymer film filtration agent for drilling fluid[D]. Qingdao: China University of Petroleum, 2018. [40] 范开鑫. PAAD/改性纳米二氧化硅共聚物钻井液降滤失剂的制备及性能研究[D]. 成都: 西南石油大学, 2017.FAN Kaixin. Preparation and performance study of PAAD/modified nano silicon dioxide polymer as a fluid loss reducing agent for drilling fluid[D]. Chengdu: Southwest Petroleum University, 2017. [41] YANG L, JIANG G C, SHI Y W, et al. Application of ionic liquid to a high-performance calcium-resistant additive for filtration control of bentonite/water-based drilling fluids[J]. Journal of Materials Science, 2017, 52:6362-6375. doi: 10.1007/s10853-017-0870-7 [42] 全红平, 吴洋, 黄志宇, 等. 抗高温耐盐型钻井液用降滤失剂的合成与性能评价[J]. 化工进展,2015,34(5):1427-1432.QUAN Hongping, WU Yang, HUANG Zhiyu, et al. Synthesis and performance evaluation of fluid loss additive for high temperature resistant and salt tolerant drilling fluid[J]. Chemical Industry and Engineering Progress, 2015, 34(5):1427-1432. [43] 刘大海, 张元, 段春兰, 等. 钻井液降滤失剂KJC的合成[J]. 石油与天然气化工,2014(5):543-546. doi: 10.3969/j.issn.1007-3426.2014.05.017LIU Dahai, ZHANG Yuan, DUAN Chunlan, et al. Synthesis of drilling fluid loss agent KJC[J]. Chemical Engineering of Oil and Gas, 2014(5):543-546. doi: 10.3969/j.issn.1007-3426.2014.05.017 [44] 王高杰, 王春亮, 陈正涛. 一种新型水溶性两性聚合物的合成与性能评价[J]. 长江大学学报(自科版),2014,11(16):63-65.WANG Gaojie, WANG Chunliang, CHEN Zhengtao. Synthesis and performance evaluation of a novel water soluble amphoteric polymer[J]. Journal of Yangtze University (Natural Science Edition), 2014, 11(16):63-65. [45] 高斌. 抗高温抗高盐钙乳液降滤失剂的制备和表征[D]. 北京: 中国石油大学(北京), 2020.GAO Bin. Preparation and characterization of high temperature and high salt resistant lotion filtration reducer[D]. Beijing: China University of Petroleum (Beijing), 2020. [46] 苏雪霞, 孙举, 郑志军, 等. 氯化钙弱凝胶无黏土相钻井液室内研究[J]. 钻井液与完井液,2014,31(3):10-13. doi: 10.3969/j.issn.1001-5620.2014.03.003SU Xuexia, SUN Ju, ZHENG Zhijun, et al. Laboratory study on calcium chloride weak gel clay free drilling fluid[J]. Drilling Fluid & Completion Fluid, 2014, 31(3):10-13. doi: 10.3969/j.issn.1001-5620.2014.03.003 [47] 马诚, 谢俊, 甄剑武, 等. 抗高浓度氯化钙水溶性聚合物增黏剂的研制[J]. 钻井液与完井液, 2014, 31(4):11-14. doi: 10.3969/j.issn.1001-5620.2014.04.004MA Cheng, XIE Jun, ZHEN Jianwu, et al. Development of high concentration calcium chloride resistant water soluble polymer thickener[J]. Drilling Fluid & Completion Fluid, 2014, 31(4):11-14. doi: 10.3969/j.issn.1001-5620.2014.04.004 [48] 孙振峰, 杨超, 李杰, 等. 钻井液用高性能增黏剂的研制及性能评价[J]. 钻井液与完井液,2024,41(1):84-91. doi: 10.12358/j.issn.1001-5620.2024.01.009SUN Zhenfeng, YANG Chao, LI Jie, et al. Development and performance evaluation of a high performance drilling fluid viscosifier[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):84-91. doi: 10.12358/j.issn.1001-5620.2024.01.009 [49] 李斌, 蒋官澄, 贺垠博. 一种抗高温抗钙两性离子聚合物分散剂[J]. 钻井液与完井液,2019,36(3):303-307. doi: 10.3969/j.issn.1001-5620.2019.03.007LI Bin, JIANG Guancheng, HE Yinbo. A high temperature calcium resistant amphoteric polymer dispersant[J]. Drilling Fluid & Completion Fluid, 2019, 36(3):303-307. doi: 10.3969/j.issn.1001-5620.2019.03.007 [50] 徐栋. 钻井液纳米材料分散稳定性研究[D]. 北京: 中国石油大学(北京), 2021.XU Dong. Study on dispersion stability of drilling fluid nanomaterials[D]. Beijing: China University of Petroleum(Beijing), 2021. [51] 夏凯. 抗高温共聚物降黏剂的合成及其性能研究[D]. 武汉: 武汉理工大学, 2019.XIA Kai. Synthesis and performance study of high temperature resistant polymer viscosity reducing agent [D]. Wuhan: Wuhan University of Technology, 2019. [52] 李洋. 抗高温水基钻井液降粘剂的研制[D]. 北京: 中国石油大学(北京), 2018.LI Yang. Development of high-temperature resistant water-based drilling fluid viscosity reducer[D]. Beijing: China University of Petroleum (Beijing), 2018. [53] 贾敏, 黄维安, 邱正松, 等. 超高温(240℃)抗盐聚合物降粘剂的合成与评价[J]. 化学试剂,2015,37(12):1067-1072.JIA Min, HUANG Weian, QIU Zhengsong, et al. Synthesis and evaluation of polymer viscosity reducer with ultra-high temperature (240℃) and salt tolerance[J]. Chemical Reagents, 2015, 37(12):1067-1072. [54] 陈娟娟. 抗温耐盐钻井液降粘剂开发与机理研究[D]. 大庆: 东北石油大学, 2015.CHEN Juanjuan. Development and mechanism research of anti temperature and salt drilling fluid viscosity reducer [D]. Daqing: Northeast Petroleum University, 2015. [55] 单锴, 邱正松, 钟汉毅, 等. 高温高矿化度高密度水基钻井液用润滑剂[J]. 钻井液与完井液,2020,37(4):450-455. doi: 10.3969/j.issn.1001-5620.2020.04.008SHAN Kai, QIU Zhengsong, ZHONG Hanyi, et al. High temperature lubricant for use in high density high salinity water base drilling fluids[J]. Drilling Fluid & Completion Fluid, 2020, 37(4):450-455. doi: 10.3969/j.issn.1001-5620.2020.04.008 [56] 周柯任. 抗高温抗饱和盐水基钻井液润滑剂实验研究[D]. 青岛: 中国石油大学(华东), 2019.ZHOU Keren. Experimental study on high-temperature and saturated saltwater based drilling fluid lubricant[D]. Qingdao: China University Of Petroleum, 2019. [57] 李佳. 两性离子聚合物抑制剂及抑制性水基钻井液研究[D]. 成都: 西南石油大学, 2017.LI Jia. Research on zwitterionic polymer inhibitors and inhibitory water-based drilling fluids[D]. Chengdu: Southwest Petroleum University, 2017. [58] 黎凌, 向朝纲, 欧翔, 等. 一种新型抗高温高钙抑制剂ZTL-1[J]. 钻井液与完井液,2014,31(5):18-21. doi: 10.3969/j.issn.1001-5620.2014.05.005LI Ling, XIANG Zhaogang, OU Xiang, et al. A novel high-temperature and high calcium inhibitor ZTL-1[J]. Drilling Fluid & Completion Fluid, 2014, 31(5):18-21. doi: 10.3969/j.issn.1001-5620.2014.05.005 [59] HAMAD B A, HE M, XU M, et al. A novel amphoteric polymer as a rheology enhancer and fluid-loss control agent for water-based drilling muds at elevated temperatures[J]. ACS Omega, 2020, 5(15):8483-8495. doi: 10.1021/acsomega.9b03774 [60] NAGRE R D, ZHAO L, FRIMPONG I K, et al. Assessment of two prop-2-enamide-based polyelectrolytes as property enhancers in aqueous bentonite mud[J]. Chemical Papers, 2016, 70(2):206-217. [61] AN Y X, JIANG G C, QI Y R, et al. Nano-fluid loss agent based on an acrylamide based copolymer “grafted” on a modified silica surface[J]. RSC Advances, 2016, 6(21):17246-17255. doi: 10.1039/C5RA24686E [62] GAUTAM S, GURIA C. Optimal synthesis, characterization, and performance evaluation of high-pressure high-temperature polymer-based drilling fluid: the effect of viscoelasticity on cutting transport, filtration loss, and lubricity[J]. SPE Journal, 2020, 25(3):1333-1350. doi: 10.2118/200487-PA -

表(2)
计量
- 文章访问数: 24
- HTML全文浏览量: 15
- PDF下载量: 7
- 被引次数: 0