Technology of Lost Circulation Prevention and Control in Deep Coalbed Methane Drilling in Eastern Ordos Basin
-
摘要: 深层煤层气的勘探开发开辟了鄂尔多斯盆地新层系领域,保证了长庆油气当量的稳步增长,但由于目的层埋藏深,上部裸眼井段长,钻探开发难度大幅增加,主要表现为二开塌漏矛盾突出、二开Ф311.2 mm井眼一次堵漏成功率低、水平段煤层井壁失稳垮塌等技术难题,为此,通过井身结构优化实现塌漏分治、研发双套钻井液体系,保证井壁稳定、采用不起钻高效堵漏技术,提高堵漏时效,同时配套关键技术措施,形成一套适用于鄂尔多斯盆地东部深层煤层气防漏堵漏技术,现场应用10余口井,钻井周期降低36.5%,支撑了国内深层煤层气最长水平段2222 m的顺利施工,通过该技术的成功应用,助力我国深层煤层气的开发。Abstract: The exploration and development of deep coalbed methane have opened up a new field of developing resources in new formations in the Ordos Basin, ensuring the steady growth of the oil and gas equivalent of the Changqing oilfield. However, due to the deep burial of the target layers and the long open hole section of the upper part, the difficulty of drilling and development has increased significantly. It is mainly manifested in technical problems such as the prominent contradiction between borehole wall collapse and lost circulation in the second interval, the low success rate of lost circulation control in the first try in the second interval Ф311.2 mm borehole, and the instability and collapse of the coal-seam borehole walls in the horizontal section. To deal with these problems, the casing program was optimized, thereby separating the borehole wall collapse and lost circulation in different intervals. Two sets of drilling fluids were developed to ensure the stability of the wellbore. An efficient technology was adopted to improve the efficiency of lost circulation control without tripping drill strings out of hole. Meanwhile key technical measures were implemented, forming a set of lost circulation prevention and control technology suitable for deep coalbed methane development in the eastern part of the Ordos Basin. This technology has been applied on more than 10 wells, and the drilling time has been reduced by 36.5%. This technology has been used to successfully drill the longest horizontal section of 2,222 m, contributing to the deep coalbed methane development in China.
-
Key words:
- Coalbed methane /
- Well profile /
- Lost circulation /
- Borehole wall stabilization
-
表 1 阶梯式CQMY-1钻井液体系
配方 井斜/
(°)ρ/
g·cm−3PV/
mPa·sYP/
PaMBT/
g·L-1FLHTHP/
mL1# 30 1.15 20~25 6~8 10 2# 60 1.35 45~45 8~10 20~25 10~15 3# 85 1.45~1.60 50~55 15~18 20~25 6~8 注:井斜30°后根据性能加入水化膨润土浆。 表 2 高滤失材料GSS-1加量评价
GSS-1/
%全滤失时间/
s固化时间/
min固化强度/
MPa塌落度/
mm5 40 不固 10 45 不固 15 62 240 20 32 20 68 240 23 20 25 71 240 24 16 30 76 240 28 15 35 82 240 30 14 40 90 240 30 13 注:清水配制,滤失时间采用API失水仪,固化时间和固化强度采用抗压抗折一体机。 表 3 刚性支撑材料JQ-2悬浮性评价
JQ-2/% ρ初始/(g·cm−3) △ρ/(g·cm−3) 5 1.08 0.01 10 1.09 0.02 15 1.12 0.03 20 1.13 0.04 25 1.14 0.04 注:基浆为清水+15%GSS-1,密度:1.07g/cm3,在透明500 mL量筒,静置30 min。 表 4 缝板承压能力评价
配方 漏失空间 承压能力/
MPa滤失量/
mL清水+20%GSS-1+
15%JQ-21 mm缝板 8 210 2 mm缝板 250 2 mm缝板 320 4 mm缝板 400 5 mm缝板 540 6 mm缝板 580 注:配浆量1500 mL。 表 5 可固化高固相复合结构塞体工作液通过性评价
配方 孔板模块/
mm是否
通过是否残留
堆积清水+15%GSS-1+15%JQ-2 34 是 否 清水+20%GSS-1+15%JQ-2 是 否 清水+25%GSS-1+15%JQ-2 是 否 -
[1] 付金华, 董国栋, 周新平, 等. 鄂尔多斯盆地油气地质研究进展与勘探技术[J]. 中国石油勘探,2021,26(3):19-40.FU Jinhua, DONG Guodong, ZHOU Xinping, et al. Research progress of petroleum geology and exploration technology in Ordos basin[J]. China Petroleum Exploration, 2021, 26(3):19-40. [2] 王红岩, 段瑶瑶, 刘洪林, 等. 煤层气水平井开发的理论技术初探-兼论煤层气和页岩气开发条件对比[J]. 煤田地质与勘探,2024,52(4):47-59. doi: 10.12363/issn.1001-1986.23.11.0794WANG Hongyan, DUAN Yaoyao, LIU Honglin, et al. Preliminarily exploring the theories and technologies for coalbed methane production using horizontal wells: comparison of conditions for coalbed methane and shale gas exploitation[J]. Coal Geology & Exploration, 2024, 52(4):47-59. doi: 10.12363/issn.1001-1986.23.11.0794 [3] 吴裕根, 门相勇, 娄钰. 我国“十四五”煤层气勘探开发新进展与前景展望[J]. 中国石油勘探,2024,29(1):1-13. doi: 10.3969/j.issn.1672-7703.2024.01.001WU Yugen, MEN Xiangyong, LOU Yu. New progress and prospect of coalbed methane exploration and development in China during the 14th Five-Year Plan period[J]. China Petroleum Exploration, 2024, 29(1):1-13. doi: 10.3969/j.issn.1672-7703.2024.01.001 [4] 门相勇, 娄钰, 王一兵, 等. 中国煤层气产业“十三五”以来发展成效与建议[J]. 天然气工业,2022,42(6):173-178. doi: 10.3787/j.issn.1000-0976.2022.06.015MEN Xiangyong, LOU Yu, WANG Yibing, et al. Development achievements of China's CBM industry since the 13th Five-Year Plan and suggestions[J]. Natural Gas Industry, 2022, 42(6):173-178. doi: 10.3787/j.issn.1000-0976.2022.06.015 [5] 侯雨庭, 周国晓, 黄道军, 等. 鄂尔多斯盆地纳林河地区煤岩气成藏地质特征[J]. 石油与天然气地质,2024,45(6):1605-1616. doi: 10.11743/ogg20240608HOU Yuting, ZHOU Guoxiao, HUANG Daojun, et al. Geological characteristics of coal-rock gas accumulation in the Nalinhe area, Ordos Basin[J]. Oil & Gas Geology, 2024, 45(6):1605-1616. doi: 10.11743/ogg20240608 [6] 牛小兵, 喻健, 徐旺林, 等. 鄂尔多斯盆地上古生界煤岩气成藏地质条件及勘探方向[J]. 天然气工业,2024,44(10):33-50. doi: 10.3787/j.issn.1000-0976.2024.10.003NIU Xiaobing, YU Jian, XU Wanglin, et al. Reservoir-forming geological conditions and exploration directions of Upper Paleozoic coal-rock gas in the Ordos Basin[J]. Natural Gas Industry, 2024, 44(10):33-50. doi: 10.3787/j.issn.1000-0976.2024.10.003 [7] 赵喆, 徐旺林, 赵振宇, 等. 鄂尔多斯盆地石炭系本溪组煤岩气地质特征与勘探突破[J]. 石油勘探与开发,2024,51(2):234-247,259. doi: 10.11698/PED.20230679ZHAO Zhe, XU Wanglin, ZHAO Zhenyu, et al. Geological characteristics and exploration breakthroughs of coal rock gas in Carboniferous Benxi Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2024, 51(2):234-247,259. doi: 10.11698/PED.20230679 [8] 孙欢, 朱明明, 张勤, 等. 长庆油田致密气水平井超长水平段安全钻井完井技术[J]. 石油钻探技术,2022,50(5):14-19. doi: 10.11911/syztjs.2022095SUN Huan, ZHU Mingming, ZHANG Qin, et al. Safe drilling and completion technologies for ultra-long horizontal section of tight gas horizontal wells in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(5):14-19. doi: 10.11911/syztjs.2022095 [9] 孙欢, 朱明明, 王伟良, 等. 长庆页岩油水平井华H90-3井超长水平段防漏堵漏技术[J]. 石油钻探技术,2022,50(2):16-21. doi: 10.11911/syztjs.2022004SUN Huan, ZHU Mingming, WANG Weiliang, et al. Lost circulation prevention and plugging technologies for the ultra-long horizontal section of the horizontal shale oil well Hua H90-3 in Changqing Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2):16-21. doi: 10.11911/syztjs.2022004 [10] 徐凤银, 王成旺, 熊先钺, 等. 深部(层)煤层气成藏模式与关键技术对策——以鄂尔多斯盆地东缘为例[J]. 中国海上油气,2022,34(4):30-42. doi: 10.11935/j.issn.1673-1506.2022.04.003XU Fengyin, WANG Chengwang, XIONG Xianyue, et al. Deep(layer)coalbed methane reservoir forming modes and key technical countermeasures: taking the eastern margin of Ordos Basin as an example[J]. China Offshore Oil and Gas, 2022, 34(4):30-42. doi: 10.11935/j.issn.1673-1506.2022.04.003 [11] 张遂安, 刘欣佳, 温庆志, 等. 煤层气增产改造技术发展现状与趋势[J]. 石油学报,2021,42(1):105-118. doi: 10.7623/syxb202101010ZHANG Suian, LIU Xinjia, WEN Qingzhi, et al. Development situation and trend of stimulation and reforming technology of coalbed methane[J]. Acta Petrolei Sinica, 2021, 42(1):105-118. doi: 10.7623/syxb202101010 [12] 蒋秀明, 吴财芳. 煤炭地下气化地质可行性和工艺适用性研究现状与进展[J]. 煤田地质与勘探,2022,50(5):1-12. doi: 10.12363/issn.1001-1986.21.09.0489JIANG Xiuming, WU Caifang. A review: Geological feasibility and technological applicability of underground coal gasification[J]. Coal Geology & Exploration, 2022, 50(5):1-12. doi: 10.12363/issn.1001-1986.21.09.0489 [13] 罗江伟. 米脂区块刘家沟组地层漏失成因及堵漏对策研究[D]. 北京: 中国石油大学(北京), 2023.LUO Jiangwei. Study on formation loss cause and plugging countermeasure of Liujiagou formation in Mizhi block[D]. Beijing: China University of Petroleum(Beijing), 2023. [14] 吕开河, 王晨烨, 雷少飞, 等. 裂缝性地层钻井液漏失规律及堵漏对策[J]. 中国石油大学学报(自然科学版),2022,46(2):85-93.LYU Kaihe, WANG Chenye, LEI Shaofei, et al. Dynamic behavior and mitigation methods for drilling fluid loss in fractured formations[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(2):85-93. [15] 张帅. 多尺度裂缝性地层漏失机理及堵漏配方研究[D]. 北京: 中国石油大学(北京), 2023.ZHANG Shuai. Study on lost circulation mechanism and control formulation in multi-scalefracture formation[D]. Beijing: China University of Petroleum(Beijing), 2023. [16] 郭新超, 张新文, 李勇龙, 等. 多次开关循环堵漏工具的研制与应用[J]. 新疆石油天然气,2017,13(4):79-81. doi: 10.3969/j.issn.1673-2677.2017.04.019GUO Xinchao, ZHANG Xinwen, LI Yonglong, et al. Development and application of multi-cycle plugging tool[J]. Xinjiang Oil & Gas, 2017, 13(4):79-81. doi: 10.3969/j.issn.1673-2677.2017.04.019 [17] 郭新超, 胡百中, 姚霖, 等. 基于RFID技术的井下智能随钻堵漏旁通阀研制[J]. 石油机械,2020,48(11):22-26,43.GUO Xinchao, HU Baizhong, YAO Lin, et al. Development of intelligent downhole plugging while-drilling bypass valve based on RFID[J]. China Petroleum Machinery, 2020, 48(11):22-26,43. -