[1] |
AKHTARMANESH S, SHAHRABI M J A, ATASHNEZHAD A. Improvement of wellbore stability in shale using nanoparticles[J]. Journal of Petroleum Science and Engineering, 2013, 112:290-295. doi: 10.1016/j.petrol.2013.11.017
|
[2] |
SENSOY T, CHENEVERT M E, SHARMA M M. Minimizing water invasion in shale using nanoparticles[C]//SPE annual technical conference and exhibition. New Orleans, Louisiana, 2009: SPE-124429-MS.
|
[3] |
CAI J, CHENEVERT M E E, SHARMA M M M, et al. Decreasing water invasion into atoka shale using nonmodified silica nanoparticles[J]. SPE Drilling & Completion, 2012, 27(1):103-112.
|
[4] |
JI L J, GUO Q X, FRIEDHEIM J, et al. Laboratory evaluation and analysis of physical shale inhibition of an innovative Water-Based drilling fluid with nanoparticles for drilling unconventional shales[C]//SPE Asia Pacific oil and gas conference and exhibition. Perth, Australia, 2012: SPE-158895-MS.
|
[5] |
CONTRERAS O, HARELAND G, HUSEIN M, et al. Wellbore strengthening in sandstones by means of nanoparticle-based drilling fluids[C]//SPE deepwater drilling and completions conference. Galveston, Texas, USA, 2014: SPE-170263-MS.
|
[6] |
张虹, 蓝强. 基于疏水改性纳米碳酸钙的钻井完井液[J]. 钻井液与完井液,2015,32(2):43-46.ZHANG Hong, LAN Qiang. Study on hydrophobic nano Calcium carbonate drilling fluid[J]. Drilling Fluid & Completion Fluid, 2015, 32(2):43-46.
|
[7] |
XIANG T, CLAPPER D. Drilling fluid systems comprising latex particle: US-2006116294-A1[P]. 2006-06-01.
|
[8] |
于军泉, 安玉秀, 马京缘, 等. 高性能页岩封堵剂的合成及其性能[J]. 石油化工,2022,51(7):806-814.YU Junquan, AN Yuxiu, MA Jingyuan, et al. Synthesis and performance of high-performance shale plugging agent[J]. Petrochemical Technology, 2022, 51(7):806-814.
|
[9] |
白小东, 蒲晓林. PMMA纳米胶乳在钻井液中的性能评价[J]. 钻井液与完井液,2010,27(1):8-10.BAI Xiaodong, PU Xiaolin. The performance of PMMA nano-latex in drilling fluids[J]. Drilling Fluid & Completion Fluid, 2010, 27(1):8-10.
|
[10] |
赵春花, 夏小春, 项涛, 等. 防冻型纳米乳化石蜡PF-EPF的研制与应用[J]. 钻井液与完井液,2016,33(5):9-14.ZHAO Chunhua, XIA Xiaochun, XIANG Tao, et al. Development and application of antifreeze nano emulsified paraffin PF-EPF[J]. Drilling Fluid & Completion Fluid, 2016, 33(5):9-14.
|
[11] |
蓝强, 苏长明, 刘伟荣, 等. 乳液和乳化技术及其在钻井液完井液中的应用[J]. 钻井液与完井液,2006,23(2):61-69. doi: 10.3969/j.issn.1001-5620.2006.02.018LAN Qiang, SU Changming, LIU Weirong, et al. Emulsions and emulsifying technique and their application in drilling and completion fluid technology[J]. Drilling Fluid & Completion Fluid, 2006, 23(2):61-69. doi: 10.3969/j.issn.1001-5620.2006.02.018
|
[12] |
褚奇, 杨枝, 李涛, 等. 硅烷偶联剂改性纳米SiO2封堵剂的制备与作用机理[J]. 钻井液与完井液,2016,33(4):47-50.CHU Qi, YANG Zhi, LI Tao, et al. Preparation and analyses of nano SiO2 plugging agent modified with silane coupling agent[J]. Drilling Fluid & Completion Fluid, 2016, 33(4):47-50.
|
[13] |
姚如钢, 蒋官澄, 李威, 等. 新型抗高温高密度纳米基钻井液研究与评价[J]. 钻井液与完井液,2013,30(2):25-28.YAO Rugang, JIANG Guancheng, LI Wei, et al. Research and evaluation of new high temperature and high density nano-drilling fluid[J]. Drilling Fluid & Completion Fluid, 2013, 30(2):25-28.
|
[14] |
LI X, HONG C Y, PAN C Y. Preparation and characterization of hyperbranched polymer grafted mesoporous silica nanoparticles via self-condensing atom transfer radical vinyl polymerization[J]. Polymer, 2010, 51(1):92-99. doi: 10.1016/j.polymer.2009.11.020
|
[15] |
毛惠, 邱正松, 沈忠厚, 等. 疏水缔合聚合物/纳米二氧化硅降滤失剂的研制及作用机理[J]. 石油学报,2014,35(4):771-778.MAO Hui, QIU Zhengsong, SHEN Zhonghou, et al. Synthesis and mechanism of hydrophobic associated polymer based nano-silica filtrate reducer[J]. Acta Petrolei Sinica, 2014, 35(4):771-778.
|
[16] |
毛惠, 邱正松, 沈忠厚, 等. 两亲嵌段疏水缔合聚合物基纳米SiO2的合成及溶液特性[J]. 高分子材料科学与工程,2015,31(1):7-12.MAO Hui, QIU Zhengsong, SHEN Zhonghou, et al. Synthetic and solution properties of amphoteric hydrophobic associated polymer based nano-silica[J]. Polymer Materials Science & Engineering, 2015, 31(1):7-12.
|
[17] |
贺明敏, 蒲晓琳, 苏俊霖, 等. 钻井液用纳米复合乳液成膜剂NCJ-1的合成与评价[J]. 石油与天然气化工,2012,41(2):187-190.HE Mingmin, PU Xiaolin, SU Junlin, et al. Synthesis and evaluation of nano-composite emulsion film-forming agent NCJ-1 for drilling fluid[J]. Chemical Engineering of Oil and Gas, 2012, 41(2):187-190.
|
[18] |
SADEGHALVAAD M, SABBAGHI S. The effect of the TiO2/polyacrylamide nanocomposite on water-based drilling fluid properties[J]. Powder Technology, 2015, 272:113-119. doi: 10.1016/j.powtec.2014.11.032
|
[19] |
BAGARIA H G, XUE Z, NEILSON B M, et al. Iron oxide nanoparticles grafted with sulfonated copolymers are stable in concentrated brine at elevated temperatures and weakly adsorb on silica[J]. ACS Applied Materials & Interfaces, 2013, 5(8):3329-3339.
|
[20] |
MA L, LUO P Y, HE Y, et al. Ultra-Stable silica nanoparticles as Nano-Plugging additive for shale exploitation in harsh environments[J]. Nanomaterials, 2019, 9(12):1683. doi: 10.3390/nano9121683
|
[21] |
MA L, XIE G, LUO P Y, et al. Dispersion stability of graphene oxide in extreme environments and its applications in shale exploitation[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(8):2609-2623.
|
[22] |
REN Y J, YANG H, WANG P Q. Polyampholyte-grafted silica nanoparticles for shale plugging under high-temperature and extreme-salinity conditions[J]. Geoenergy Science and Engineering, 2024, 233:212576. doi: 10.1016/j.geoen.2023.212576
|