留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两性离子聚合物改性纳米颗粒的抗钙封堵降滤失性能与机理

李文哲 沈欣宇 王锐 杨航 刘兴宝 谯青松

李文哲,沈欣宇,王锐,等. 两性离子聚合物改性纳米颗粒的抗钙封堵降滤失性能与机理[J]. 钻井液与完井液,2025,42(3):324-329 doi: 10.12358/j.issn.1001-5620.2025.03.007
引用本文: 李文哲,沈欣宇,王锐,等. 两性离子聚合物改性纳米颗粒的抗钙封堵降滤失性能与机理[J]. 钻井液与完井液,2025,42(3):324-329 doi: 10.12358/j.issn.1001-5620.2025.03.007
LI Wenzhe, SHEN Xinyu, WANG Rui, et al.Performance and mechanisms of zwitterionic polymer modified nanoparticles in calcium resistance, plugging and filtration control[J]. Drilling Fluid & Completion Fluid,2025, 42(3):324-329 doi: 10.12358/j.issn.1001-5620.2025.03.007
Citation: LI Wenzhe, SHEN Xinyu, WANG Rui, et al.Performance and mechanisms of zwitterionic polymer modified nanoparticles in calcium resistance, plugging and filtration control[J]. Drilling Fluid & Completion Fluid,2025, 42(3):324-329 doi: 10.12358/j.issn.1001-5620.2025.03.007

两性离子聚合物改性纳米颗粒的抗钙封堵降滤失性能与机理

doi: 10.12358/j.issn.1001-5620.2025.03.007
基金项目: 中国石油西南油气田公司校企联合攻关项目“高密度钻井液抗盐水、抗酸性气体污染机理及对策研究”(20230302-17)。
详细信息
    作者简介:

    李文哲,高级工程师,1987年生,毕业于成都理工大学石油工程专业获硕士学位,主要从事川渝地区钻井方面的工作。电话(028)86017977;E-mail:lwz9@petrochina.com.cn

  • 中图分类号: TE254.4

Performance and Mechanisms of Zwitterionic Polymer Modified Nanoparticles in Calcium Resistance, Plugging and Filtration Control

  • 摘要: 为解决水基钻井液抗温抗钙封堵问题,基于“反聚电解质效应”相关理论,通过在二氧化硅纳米颗粒表面接枝两性聚合物,得到了适应高温高钙钻井环境封堵性纳米颗粒ZP-NPs。借助红外光谱、电镜观察确认其微观结构,通过分散稳定、滤失实验、封堵实验评价其性能。结果表明:ZP-NPs在高温高浓度钙盐水(160℃,11%CaCl2)中长期保持纳米级/亚微米级稳定分散,含ZP-NPs的基浆受高浓度钙污染后高温高压(160℃、3.5 MPa)滤失量不超过 20 mL、滤饼薄而致密,协同膨润土封堵5 μm裂缝可承受5.5 MPa。通过粒径分析、能谱元素分析揭示了ZP-NPs抗钙封堵降滤失机理:ZP-NPs具有强的“反聚电解质”效应,在高钙条件下仍保持纳米粒径分布,并且能屏蔽钙离子在膨润土颗粒上的吸附、改善膨润土浆的抗钙分散稳定性,由此使得膨润土浆在高钙条件下保持优异的降滤失性能。该研究成果为抗钙封堵剂新材料研发提供了新的理论与技术指导。

     

  • 图  1  SiO2和ZP-NPs的红外光谱图

    图  2  未改性SiO2和ZP-NPs水溶液的ESEM照片

    图  3  未改性SiO2和ZP-NPs分散液的长期静置照片

    注:(a)、(c)为去离子水;(b)、(d)为11%CaCl2盐水

    图  4  SiO2(a)和ZP-NPs(b)在不同介质中的粒径分布

    图  5  ZP-NPs加量对11%CaCl2基浆滤失量的影响

    图  6  ZP-NPs对11%氯化钙基浆滤饼质量的影响

    注:a.11%氯化钙基浆,API滤饼;b. 氯化钙基浆+2.5% ZP-NPs,API滤饼;c. 氯化钙基浆+2.5%ZP-NPs,HTHP滤饼(160℃、3.5 MPa)

    图  7  不同高浓度CaCl2基浆封堵作用下岩心裂缝出口端压力随时间的变化     

    图  8  ZP-NPs对11%氯化钙基浆滤饼微观形貌与主要元素组成的影响

    注:a.11%氯化钙基浆,API滤饼;b. 氯化钙基浆+2.5%ZP-NPs,API滤饼;c. 氯化钙基浆+2.5%ZP-NPs,HTHP滤饼,160℃、3.5 MPa

  • [1] AKHTARMANESH S, SHAHRABI M J A, ATASHNEZHAD A. Improvement of wellbore stability in shale using nanoparticles[J]. Journal of Petroleum Science and Engineering, 2013, 112:290-295. doi: 10.1016/j.petrol.2013.11.017
    [2] SENSOY T, CHENEVERT M E, SHARMA M M. Minimizing water invasion in shale using nanoparticles[C]//SPE annual technical conference and exhibition. New Orleans, Louisiana, 2009: SPE-124429-MS.
    [3] CAI J, CHENEVERT M E E, SHARMA M M M, et al. Decreasing water invasion into atoka shale using nonmodified silica nanoparticles[J]. SPE Drilling & Completion, 2012, 27(1):103-112.
    [4] JI L J, GUO Q X, FRIEDHEIM J, et al. Laboratory evaluation and analysis of physical shale inhibition of an innovative Water-Based drilling fluid with nanoparticles for drilling unconventional shales[C]//SPE Asia Pacific oil and gas conference and exhibition. Perth, Australia, 2012: SPE-158895-MS.
    [5] CONTRERAS O, HARELAND G, HUSEIN M, et al. Wellbore strengthening in sandstones by means of nanoparticle-based drilling fluids[C]//SPE deepwater drilling and completions conference. Galveston, Texas, USA, 2014: SPE-170263-MS.
    [6] 张虹, 蓝强. 基于疏水改性纳米碳酸钙的钻井完井液[J]. 钻井液与完井液,2015,32(2):43-46.

    ZHANG Hong, LAN Qiang. Study on hydrophobic nano Calcium carbonate drilling fluid[J]. Drilling Fluid & Completion Fluid, 2015, 32(2):43-46.
    [7] XIANG T, CLAPPER D. Drilling fluid systems comprising latex particle: US-2006116294-A1[P]. 2006-06-01.
    [8] 于军泉, 安玉秀, 马京缘, 等. 高性能页岩封堵剂的合成及其性能[J]. 石油化工,2022,51(7):806-814.

    YU Junquan, AN Yuxiu, MA Jingyuan, et al. Synthesis and performance of high-performance shale plugging agent[J]. Petrochemical Technology, 2022, 51(7):806-814.
    [9] 白小东, 蒲晓林. PMMA纳米胶乳在钻井液中的性能评价[J]. 钻井液与完井液,2010,27(1):8-10.

    BAI Xiaodong, PU Xiaolin. The performance of PMMA nano-latex in drilling fluids[J]. Drilling Fluid & Completion Fluid, 2010, 27(1):8-10.
    [10] 赵春花, 夏小春, 项涛, 等. 防冻型纳米乳化石蜡PF-EPF的研制与应用[J]. 钻井液与完井液,2016,33(5):9-14.

    ZHAO Chunhua, XIA Xiaochun, XIANG Tao, et al. Development and application of antifreeze nano emulsified paraffin PF-EPF[J]. Drilling Fluid & Completion Fluid, 2016, 33(5):9-14.
    [11] 蓝强, 苏长明, 刘伟荣, 等. 乳液和乳化技术及其在钻井液完井液中的应用[J]. 钻井液与完井液,2006,23(2):61-69. doi: 10.3969/j.issn.1001-5620.2006.02.018

    LAN Qiang, SU Changming, LIU Weirong, et al. Emulsions and emulsifying technique and their application in drilling and completion fluid technology[J]. Drilling Fluid & Completion Fluid, 2006, 23(2):61-69. doi: 10.3969/j.issn.1001-5620.2006.02.018
    [12] 褚奇, 杨枝, 李涛, 等. 硅烷偶联剂改性纳米SiO2封堵剂的制备与作用机理[J]. 钻井液与完井液,2016,33(4):47-50.

    CHU Qi, YANG Zhi, LI Tao, et al. Preparation and analyses of nano SiO2 plugging agent modified with silane coupling agent[J]. Drilling Fluid & Completion Fluid, 2016, 33(4):47-50.
    [13] 姚如钢, 蒋官澄, 李威, 等. 新型抗高温高密度纳米基钻井液研究与评价[J]. 钻井液与完井液,2013,30(2):25-28.

    YAO Rugang, JIANG Guancheng, LI Wei, et al. Research and evaluation of new high temperature and high density nano-drilling fluid[J]. Drilling Fluid & Completion Fluid, 2013, 30(2):25-28.
    [14] LI X, HONG C Y, PAN C Y. Preparation and characterization of hyperbranched polymer grafted mesoporous silica nanoparticles via self-condensing atom transfer radical vinyl polymerization[J]. Polymer, 2010, 51(1):92-99. doi: 10.1016/j.polymer.2009.11.020
    [15] 毛惠, 邱正松, 沈忠厚, 等. 疏水缔合聚合物/纳米二氧化硅降滤失剂的研制及作用机理[J]. 石油学报,2014,35(4):771-778.

    MAO Hui, QIU Zhengsong, SHEN Zhonghou, et al. Synthesis and mechanism of hydrophobic associated polymer based nano-silica filtrate reducer[J]. Acta Petrolei Sinica, 2014, 35(4):771-778.
    [16] 毛惠, 邱正松, 沈忠厚, 等. 两亲嵌段疏水缔合聚合物基纳米SiO2的合成及溶液特性[J]. 高分子材料科学与工程,2015,31(1):7-12.

    MAO Hui, QIU Zhengsong, SHEN Zhonghou, et al. Synthetic and solution properties of amphoteric hydrophobic associated polymer based nano-silica[J]. Polymer Materials Science & Engineering, 2015, 31(1):7-12.
    [17] 贺明敏, 蒲晓琳, 苏俊霖, 等. 钻井液用纳米复合乳液成膜剂NCJ-1的合成与评价[J]. 石油与天然气化工,2012,41(2):187-190.

    HE Mingmin, PU Xiaolin, SU Junlin, et al. Synthesis and evaluation of nano-composite emulsion film-forming agent NCJ-1 for drilling fluid[J]. Chemical Engineering of Oil and Gas, 2012, 41(2):187-190.
    [18] SADEGHALVAAD M, SABBAGHI S. The effect of the TiO2/polyacrylamide nanocomposite on water-based drilling fluid properties[J]. Powder Technology, 2015, 272:113-119. doi: 10.1016/j.powtec.2014.11.032
    [19] BAGARIA H G, XUE Z, NEILSON B M, et al. Iron oxide nanoparticles grafted with sulfonated copolymers are stable in concentrated brine at elevated temperatures and weakly adsorb on silica[J]. ACS Applied Materials & Interfaces, 2013, 5(8):3329-3339.
    [20] MA L, LUO P Y, HE Y, et al. Ultra-Stable silica nanoparticles as Nano-Plugging additive for shale exploitation in harsh environments[J]. Nanomaterials, 2019, 9(12):1683. doi: 10.3390/nano9121683
    [21] MA L, XIE G, LUO P Y, et al. Dispersion stability of graphene oxide in extreme environments and its applications in shale exploitation[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(8):2609-2623.
    [22] REN Y J, YANG H, WANG P Q. Polyampholyte-grafted silica nanoparticles for shale plugging under high-temperature and extreme-salinity conditions[J]. Geoenergy Science and Engineering, 2024, 233:212576. doi: 10.1016/j.geoen.2023.212576
  • 加载中
图(8)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  7
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-16
  • 修回日期:  2025-02-23
  • 刊出日期:  2025-06-12

目录

    /

    返回文章
    返回