Simulation Experiment Study on Lost Circulation Control by Borehole Wall Strengthening
-
摘要: 针对承压防漏钻井液技术难题,为揭示井壁强化封堵裂缝微观机理,开展了井壁强化承压模拟实验研究。综合考虑井壁强化过程中裂缝闭合应力对裂缝开度的影响,建立了可变裂缝封堵模拟实验装置及评价方法,提出了最大封堵压差和等效封堵位置的定量化评价指标。修正的正态分布粒度匹配准则与常用的粒度匹配准则相比,最高可提升承压能力2.36倍。等效封堵位置与承压能力呈反比,修正的正态分布连续粒度准则可在裂缝入口端形成薄而致密的封堵层;尽可能提高承压封堵材料的强度可降低井筒压力波动的影响,增加井壁强化封堵材料的弹性可提高封堵层对动态裂缝的适应性;另外,适当增加封堵体系的悬浮稳定性,及合理降低其注入速度,均有利于承压封堵层形成及井壁强化效果改善。Abstract: Laboratory simulation study was conducted on the strengthening of borehole walls to try to find a way of dealing with lost circulation under pressure and to reveal the micro-mechanisms of fracture plugging to strengthen the borehole walls. By comprehensively considering the effects of the closure pressure of fractures on their openings during borehole wall strengthening, a set of experiment apparatus was developed and a method for evaluating the plugging of fractures with variable openings established. Used with the apparatus and the evaluation method, two quantitative evaluation indicators, which are maximum plugging differential pressure and equivalent plugging position, were proposed. Compared with the commonly used particle size matching criterion, using the revised normal distribution particle size matching criterion, the pressure bearing capacity of a borehole wall can be increased by 2.36 times at most. Equivalent plugging position is inversely proportional to pressure bearing capacity, and the revised normal distribution continuous particle size matching criterion can form at the entry of fractures a thin and dense plugging layer. Increase the strength of the plugging materials to a level as high as possible, the effect of the well pressure fluctuation can be reduced; increase the elasticity of the borehole wall strengthening plugging agents, the adaptability of the plugging layer to the dynamic fractures can be improved. Moreover, appropriately increasing the suspension stability of the plugging system and reasonably reducing its injection rate both are beneficial to the formation of the pressure bearing plugging layer and to the improvement of borehole wall strengthening.
-
表 1 裂缝开度及粒度组成
初始裂缝开度/μm 粒度/μm 匹配准则 D10/μm D25/μm D50/μm D75/μm D90/μm 200 150~300 D50准则 160 175 200 250 280 表 2 不同粒径匹配准则对裂缝强化承压封堵效果的影响
粒径匹配
准则粒径分布/
μm粒径含量/
%最大封堵
压差/ MPa等效封堵
位置1/3准则 0~167 50 5.19 0.57 167~550 50 D50准则 0~450 50 9.01 0.36 450~550 50 D90准则 0~450 90 6.42 0.44 450~550 10 表 3 粒径分布优化设计正交试验承压能力测试结果
实验
编号dmax dmin μ σ 最大封堵
压差/MPa1 1.2Wmax 0.4Wmean 0.9dmean 0.3dmean 2.22 2 1.2Wmax 0.6Wmean 1.0dmean 0.4dmean 4.55 3 1.2Wmax 0.8Wmean 1.1dmean 0.5dmean 14.11 4 1.3Wmax 0.4Wmean 1.0dmean 0.5dmean 1.92 5 1.3Wmax 0.6Wmean 1.1dmean 0.3dmean 9.70 6 1.3Wmax 0.8Wmean 0.9dmean 0.4dmean 16.40 7 1.4Wmax 0.4Wmean 1.1dmean 0.4dmean 1.59 8 1.4Wmax 0.6Wmean 0.9dmean 0.5dmean 4.29 9 1.4Wmax 0.8Wmean 1.0dmean 0.3dmean 19.74 表 4 极差分析法计算结果
K dmax dmin μ σ K1 6.96 1.91 7.63 10.55 K dmax dmin μ σ K2 9.34 6.18 8.73 7.51 K3 8.54 16.75 8.47 6.77 R 2.38 14.84 1.10 3.78 表 5 不同匹配准则承压能力测试结果
匹配准则 200~300 μm
粒径占比/%300~400 μm
粒径占比/%400~500 μm
粒径占比/%500~600 μm
粒径占比/%600~650 μm
粒径占比/%最大封堵
压差/MPa1/3准则 67.5 10.6 9.4 8.5 4.0 4.78 D50准则 19.3 16.3 14.4 34.0 16 9.16 D90准则 34.8 29.3 25.9 6.8 3.2 6.51 修正的正态分布准则 13.5 28.0 32.5 21.0 5.0 11.26 表 6 封堵材料力学性能对可变裂缝强化承压封堵作用的影响
材料类型 加量/(g·mL−1) 密度/(g·cm−3) 弹性模量/GPa 回弹系数/% 最大封堵压差/MPa 等效封堵位置 果壳 0.019 1.24 0.22 3.48 5.13 0.47 弹性石墨 0.024 1.61 12.00 111.25 12.93 0.27 碳酸钙 0.041 2.70 41.00 0.65 6.25 0.42 注:配方为4%基浆+0.4%PAV-HV+5%封堵材料。 表 7 聚合物加量对封堵工作液流变性的影响
聚合物加量/% AV/mPa·s PV/mPa·s YP/Pa 最大封堵压差/MPa 等效封堵位置 0.2 26 17 9 5.58 0.42 0.3 30 18 12 7.53 0.36 0.4 36 20 16 9.11 0.31 注:配方为:4%基浆+0.4%PAV-HV+5%碳酸钙。 表 8 注入速度对强化承压封堵作用的影响
注入速度/(mL·min−1) 最大封堵压差/MPa 等效封堵位置 5 7.49 0.33 10 6.15 0.36 15 5.38 0.39 -
[1] 孙金声, 白英睿, 程荣超, 等. 裂缝性恶性井漏地层堵漏技术研究进展与展望[J]. 石油勘探与开发,2021,48(3):630-638.SUN Jinsheng, BAI Yingrui, CHENG Rongchao, et al. Research progress and prospect of plugging technologies for fractured formation with severe lost circulation[J]. Petroleum Exploration and Development, 2021, 48(3):630-638. [2] ALBERTY M W, MCLEAN M R. A physical model for stress cages[C]//SPE annual technical conference and exhibition. Houston, Texas, 2004: SPE-90493-MS. [3] DUPRIEST F E. Fracture closure stress (FCS) and lost returns practices[C]//SPE/IADC Drilling Conference. Amsterdam, Netherlands, 2005: SPE-92192-MS. [4] MORITA N, BLACK A D, GUH G F. Theory of lost circulation pressure[C]//SPE annual technical conference and exhibition. New Orleans, Louisiana, 1990: SPE-20409-MS. [5] XU C Y, ZHANG H L, KANG Y L, et al. Physical plugging of lost circulation fractures at microscopic level[J]. Fuel, 2022, 317:123477. doi: 10.1016/j.fuel.2022.123477 [6] 邱正松, 暴丹, 刘均一, 等. 裂缝封堵失稳微观机理及致密承压封堵实验[J]. 石油学报,2018,39(5):587-596.QIU Zhengsong, BAO Dan, LIU Junyi, et al. Microcosmic mechanism of fracture-plugging instability and experimental study on pressure bearing and tight plugging[J]. Acta Petrolei Sinica, 2018, 39(5):587-596. [7] LI J, QIU Z S, ZHONG H Y, et al. Effects of water-based drilling fluid on properties of mud cake and wellbore stability[J]. Journal of Petroleum Science and Engineering, 2022, 208, Part D: 109704. [8] FENG Y, LI G, MENG Y F, et al. A novel approach to investigating transport of lost circulation materials in rough fracture[J]. Energies, 2018, 11(10):2572. doi: 10.3390/en11102572 [9] LI R, LI G, FENG Y, et al. Innovative experimental method for particle bridging behaviors in natural fractures[J]. Journal of Natural Gas Science and Engineering, 2022, 97:104379. doi: 10.1016/j.jngse.2021.104379 [10] ZHU B Y, TANG H M, YIN S L, et al. Effect of fracture roughness on transport of suspended particles in fracture during drilling[J]. Journal of Petroleum Science and Engineering, 2021, 207:109080. doi: 10.1016/j.petrol.2021.109080 [11] ZHU B Y, TANG H M, YIN S L, et al. Experimental and numerical investigations of particle plugging in fracture-vuggy reservoir: A case study[J]. Journal of Petroleum Science and Engineering, 2022, 208, Part D: 109610. [12] LIN C, TALEGHANI A D, KANG Y L, et al. A coupled CFD-DEM numerical simulation of formation and evolution of sealing zones[J]. Journal of Petroleum Science and Engineering, 2022, 208, Part D: 109765. [13] LIN C, TALEGHANI A D, KANG Y L, et al. A coupled CFD-DEM simulation of fracture sealing: Effect of lost circulation material, drilling fluid and fracture conditions[J]. Fuel, 2022, 322:124212. doi: 10.1016/j.fuel.2022.124212 [14] 李亮,方俊伟,彭博一,等. 塔河油田碳酸盐岩储层中聚合物凝胶堵漏技术[J]. 钻井液与完井液,2024,41(4):437-443.LI Liang, FANG Junwei, PENG Boyi, et al. Control mud losses into carbonate reservoirs with polymer gels in Tahe oilfield[J]. Drilling Fluid amp& Completion Fluid, 2024, 41(4):437-443 [15] MIRABBASI S M, AMERI M J, ALSABA M, et al. The evolution of lost circulation prevention and mitigation based on wellbore strengthening theory: A review on experimental issues[J]. Journal of Petroleum Science and Engineering, 2022, 211:110149. doi: 10.1016/j.petrol.2022.110149 [16] 贺垠博,许杰,崔国杰,等. 海上某盆地胶结型防漏堵漏钻井液技术[J]. 钻井液与完井液,2024,41(1):68-75.HE Yinbo, XU Jie, CUI Guojie, et al. Research on cementing and loss prevention drilling fluid technology during drilling in the sea basin[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):68-75 [17] YAN X P, XU C Y, KANG Y L, et al. Mesoscopic structure characterization of plugging zone for lost circulation control in fractured reservoirs based on photoelastic experiment[J]. Journal of Natural Gas Science and Engineering, 2020, 79:103339. doi: 10.1016/j.jngse.2020.103339 [18] 孙金声,王韧,龙一夫. 我国钻井液技术难题、新进展及发展建议[J]. 钻井液与完井液,2024,41(1):1-30.SUN Jinsheng, WANG Ren, LONG Yifu. Challenges, developments, and suggestions for drilling fluid technology in China[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):1-30 [19] 许成元, 张洪琳, 康毅力, 等. 深层裂缝性储层物理类堵漏材料定量评价优选方法[J]. 天然气工业,2021,41(12):99-109. doi: 10.3787/j.issn.1000-0976.2021.12.011XU Chengyuan, ZHANG Honglin, KANG Yili, et al. Quantitative evaluation and selection method of physical plugging materials in deep fractured reservoirs[J]. Natural Gas Industry, 2021, 41(12):99-109. doi: 10.3787/j.issn.1000-0976.2021.12.011 [20] KARAMI M, AMERI M J, MIRABBASI S M, et al. Wellbore strengthening evaluation with core fracturing apparatus: An experimental and field test study based on preventive approach[J]. Journal of Petroleum Science and Engineering, 2022, 208, Part A: 109276. [21] 杨丽丽,武昀朋,蒋官澄,等. 自修复凝胶堵漏技术研究[J]. 钻井液与完井液,2023,40(1):47-53.YANG Lili, WU Yunpeng, JIANG Guancheng, et al. Lost circulation material and technology research of self-healing hydrogel[J]. Drilling Fluid & Completion Fluid, 2023, 40(1):47-53. [22] 朱立鑫, 黄维安, 段文广,等. 玛湖区块易漏地层防漏堵漏技术[J]. 钻井液与完井液,2020,37(4):469-475.ZHU Lixin, HUANG Weian, DUAN Wenguang,et al. Study and Application of Technology for Preventing and Controlling Mud Losses in Mahu Block[J]. Drilling Fluid & Completion Fluid, 2020, 37(4):469-475. -