留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

井壁强化承压防漏技术模拟实验研究

吴春林 文明 邱正松

吴春林,文明,邱正松. 井壁强化承压防漏技术模拟实验研究[J]. 钻井液与完井液,2025,42(3):318-323 doi: 10.12358/j.issn.1001-5620.2025.03.006
引用本文: 吴春林,文明,邱正松. 井壁强化承压防漏技术模拟实验研究[J]. 钻井液与完井液,2025,42(3):318-323 doi: 10.12358/j.issn.1001-5620.2025.03.006
WU Chunlin, WEN Ming, QIU Zhengsong.Simulation experiment study on lost circulation control by borehole wall strengthening[J]. Drilling Fluid & Completion Fluid,2025, 42(3):318-323 doi: 10.12358/j.issn.1001-5620.2025.03.006
Citation: WU Chunlin, WEN Ming, QIU Zhengsong.Simulation experiment study on lost circulation control by borehole wall strengthening[J]. Drilling Fluid & Completion Fluid,2025, 42(3):318-323 doi: 10.12358/j.issn.1001-5620.2025.03.006

井壁强化承压防漏技术模拟实验研究

doi: 10.12358/j.issn.1001-5620.2025.03.006
基金项目: 中石油股份公司攻关性应用性科技专项“页岩气规模增储上产与勘探开发技术研究”(2023ZZ21YJ02)。
详细信息
    作者简介:

    吴春林,企业高级专家,现在主要从事钻完井、压裂和修井工程等方面的研究。E-mail:wuchunlin@petrochina.com.cn

  • 中图分类号: TE282

Simulation Experiment Study on Lost Circulation Control by Borehole Wall Strengthening

  • 摘要: 针对承压防漏钻井液技术难题,为揭示井壁强化封堵裂缝微观机理,开展了井壁强化承压模拟实验研究。综合考虑井壁强化过程中裂缝闭合应力对裂缝开度的影响,建立了可变裂缝封堵模拟实验装置及评价方法,提出了最大封堵压差和等效封堵位置的定量化评价指标。修正的正态分布粒度匹配准则与常用的粒度匹配准则相比,最高可提升承压能力2.36倍。等效封堵位置与承压能力呈反比,修正的正态分布连续粒度准则可在裂缝入口端形成薄而致密的封堵层;尽可能提高承压封堵材料的强度可降低井筒压力波动的影响,增加井壁强化封堵材料的弹性可提高封堵层对动态裂缝的适应性;另外,适当增加封堵体系的悬浮稳定性,及合理降低其注入速度,均有利于承压封堵层形成及井壁强化效果改善。

     

  • 图  1  自制的井壁强化可变裂缝封堵动态模拟实验装置

    图  2  封堵层分布情况

    表  1  裂缝开度及粒度组成

    初始裂缝开度/μm粒度/μm匹配准则D10/μmD25/μmD50/μmD75/μmD90/μm
    200150~300D50准则160175200250280
    下载: 导出CSV

    表  2  不同粒径匹配准则对裂缝强化承压封堵效果的影响

    粒径匹配
    准则
    粒径分布/
    μm
    粒径含量/
    %
    最大封堵
    压差/ MPa
    等效封堵
    位置
    1/3准则 0~167 50 5.19 0.57
    167~550 50
    D50准则 0~450 50 9.01 0.36
    450~550 50
    D90准则 0~450 90 6.42 0.44
    450~550 10
    下载: 导出CSV

    表  3  粒径分布优化设计正交试验承压能力测试结果

    实验
    编号
    dmax dmin μ σ 最大封堵
    压差/MPa
    1 1.2Wmax 0.4Wmean 0.9dmean 0.3dmean 2.22
    2 1.2Wmax 0.6Wmean 1.0dmean 0.4dmean 4.55
    3 1.2Wmax 0.8Wmean 1.1dmean 0.5dmean 14.11
    4 1.3Wmax 0.4Wmean 1.0dmean 0.5dmean 1.92
    5 1.3Wmax 0.6Wmean 1.1dmean 0.3dmean 9.70
    6 1.3Wmax 0.8Wmean 0.9dmean 0.4dmean 16.40
    7 1.4Wmax 0.4Wmean 1.1dmean 0.4dmean 1.59
    8 1.4Wmax 0.6Wmean 0.9dmean 0.5dmean 4.29
    9 1.4Wmax 0.8Wmean 1.0dmean 0.3dmean 19.74
    下载: 导出CSV

    表  4  极差分析法计算结果

    K dmax dmin μ σ
    K1 6.96 1.91 7.63 10.55
    K dmax dmin μ σ
    K2 9.34 6.18 8.73 7.51
    K3 8.54 16.75 8.47 6.77
    R 2.38 14.84 1.10 3.78
    下载: 导出CSV

    表  5  不同匹配准则承压能力测试结果

    匹配准则 200~300 μm
    粒径占比/%
    300~400 μm
    粒径占比/%
    400~500 μm
    粒径占比/%
    500~600 μm
    粒径占比/%
    600~650 μm
    粒径占比/%
    最大封堵
    压差/MPa
    1/3准则 67.5 10.6 9.4 8.5 4.0 4.78
    D50准则 19.3 16.3 14.4 34.0 16 9.16
    D90准则 34.8 29.3 25.9 6.8 3.2 6.51
    修正的正态分布准则 13.5 28.0 32.5 21.0 5.0 11.26
    下载: 导出CSV

    表  6  封堵材料力学性能对可变裂缝强化承压封堵作用的影响

    材料类型 加量/(g·mL−1 密度/(g·cm−3 弹性模量/GPa 回弹系数/% 最大封堵压差/MPa 等效封堵位置
    果壳 0.019 1.24 0.22 3.48 5.13 0.47
    弹性石墨 0.024 1.61 12.00 111.25 12.93 0.27
    碳酸钙 0.041 2.70 41.00 0.65 6.25 0.42
      注:配方为4%基浆+0.4%PAV-HV+5%封堵材料。
    下载: 导出CSV

    表  7  聚合物加量对封堵工作液流变性的影响

    聚合物加量/% AV/mPa·s PV/mPa·s YP/Pa 最大封堵压差/MPa 等效封堵位置
    0.2 26 17 9 5.58 0.42
    0.3 30 18 12 7.53 0.36
    0.4 36 20 16 9.11 0.31
      注:配方为:4%基浆+0.4%PAV-HV+5%碳酸钙。
    下载: 导出CSV

    表  8  注入速度对强化承压封堵作用的影响

    注入速度/(mL·min−1 最大封堵压差/MPa 等效封堵位置
    5 7.49 0.33
    10 6.15 0.36
    15 5.38 0.39
    下载: 导出CSV
  • [1] 孙金声, 白英睿, 程荣超, 等. 裂缝性恶性井漏地层堵漏技术研究进展与展望[J]. 石油勘探与开发,2021,48(3):630-638.

    SUN Jinsheng, BAI Yingrui, CHENG Rongchao, et al. Research progress and prospect of plugging technologies for fractured formation with severe lost circulation[J]. Petroleum Exploration and Development, 2021, 48(3):630-638.
    [2] ALBERTY M W, MCLEAN M R. A physical model for stress cages[C]//SPE annual technical conference and exhibition. Houston, Texas, 2004: SPE-90493-MS.
    [3] DUPRIEST F E. Fracture closure stress (FCS) and lost returns practices[C]//SPE/IADC Drilling Conference. Amsterdam, Netherlands, 2005: SPE-92192-MS.
    [4] MORITA N, BLACK A D, GUH G F. Theory of lost circulation pressure[C]//SPE annual technical conference and exhibition. New Orleans, Louisiana, 1990: SPE-20409-MS.
    [5] XU C Y, ZHANG H L, KANG Y L, et al. Physical plugging of lost circulation fractures at microscopic level[J]. Fuel, 2022, 317:123477. doi: 10.1016/j.fuel.2022.123477
    [6] 邱正松, 暴丹, 刘均一, 等. 裂缝封堵失稳微观机理及致密承压封堵实验[J]. 石油学报,2018,39(5):587-596.

    QIU Zhengsong, BAO Dan, LIU Junyi, et al. Microcosmic mechanism of fracture-plugging instability and experimental study on pressure bearing and tight plugging[J]. Acta Petrolei Sinica, 2018, 39(5):587-596.
    [7] LI J, QIU Z S, ZHONG H Y, et al. Effects of water-based drilling fluid on properties of mud cake and wellbore stability[J]. Journal of Petroleum Science and Engineering, 2022, 208, Part D: 109704.
    [8] FENG Y, LI G, MENG Y F, et al. A novel approach to investigating transport of lost circulation materials in rough fracture[J]. Energies, 2018, 11(10):2572. doi: 10.3390/en11102572
    [9] LI R, LI G, FENG Y, et al. Innovative experimental method for particle bridging behaviors in natural fractures[J]. Journal of Natural Gas Science and Engineering, 2022, 97:104379. doi: 10.1016/j.jngse.2021.104379
    [10] ZHU B Y, TANG H M, YIN S L, et al. Effect of fracture roughness on transport of suspended particles in fracture during drilling[J]. Journal of Petroleum Science and Engineering, 2021, 207:109080. doi: 10.1016/j.petrol.2021.109080
    [11] ZHU B Y, TANG H M, YIN S L, et al. Experimental and numerical investigations of particle plugging in fracture-vuggy reservoir: A case study[J]. Journal of Petroleum Science and Engineering, 2022, 208, Part D: 109610.
    [12] LIN C, TALEGHANI A D, KANG Y L, et al. A coupled CFD-DEM numerical simulation of formation and evolution of sealing zones[J]. Journal of Petroleum Science and Engineering, 2022, 208, Part D: 109765.
    [13] LIN C, TALEGHANI A D, KANG Y L, et al. A coupled CFD-DEM simulation of fracture sealing: Effect of lost circulation material, drilling fluid and fracture conditions[J]. Fuel, 2022, 322:124212. doi: 10.1016/j.fuel.2022.124212
    [14] 李亮,方俊伟,彭博一,等. 塔河油田碳酸盐岩储层中聚合物凝胶堵漏技术[J]. 钻井液与完井液,2024,41(4):437-443.

    LI Liang, FANG Junwei, PENG Boyi, et al. Control mud losses into carbonate reservoirs with polymer gels in Tahe oilfield[J]. Drilling Fluid amp& Completion Fluid, 2024, 41(4):437-443
    [15] MIRABBASI S M, AMERI M J, ALSABA M, et al. The evolution of lost circulation prevention and mitigation based on wellbore strengthening theory: A review on experimental issues[J]. Journal of Petroleum Science and Engineering, 2022, 211:110149. doi: 10.1016/j.petrol.2022.110149
    [16] 贺垠博,许杰,崔国杰,等. 海上某盆地胶结型防漏堵漏钻井液技术[J]. 钻井液与完井液,2024,41(1):68-75.

    HE Yinbo, XU Jie, CUI Guojie, et al. Research on cementing and loss prevention drilling fluid technology during drilling in the sea basin[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):68-75
    [17] YAN X P, XU C Y, KANG Y L, et al. Mesoscopic structure characterization of plugging zone for lost circulation control in fractured reservoirs based on photoelastic experiment[J]. Journal of Natural Gas Science and Engineering, 2020, 79:103339. doi: 10.1016/j.jngse.2020.103339
    [18] 孙金声,王韧,龙一夫. 我国钻井液技术难题、新进展及发展建议[J]. 钻井液与完井液,2024,41(1):1-30.

    SUN Jinsheng, WANG Ren, LONG Yifu. Challenges, developments, and suggestions for drilling fluid technology in China[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):1-30
    [19] 许成元, 张洪琳, 康毅力, 等. 深层裂缝性储层物理类堵漏材料定量评价优选方法[J]. 天然气工业,2021,41(12):99-109. doi: 10.3787/j.issn.1000-0976.2021.12.011

    XU Chengyuan, ZHANG Honglin, KANG Yili, et al. Quantitative evaluation and selection method of physical plugging materials in deep fractured reservoirs[J]. Natural Gas Industry, 2021, 41(12):99-109. doi: 10.3787/j.issn.1000-0976.2021.12.011
    [20] KARAMI M, AMERI M J, MIRABBASI S M, et al. Wellbore strengthening evaluation with core fracturing apparatus: An experimental and field test study based on preventive approach[J]. Journal of Petroleum Science and Engineering, 2022, 208, Part A: 109276.
    [21] 杨丽丽,武昀朋,蒋官澄,等. 自修复凝胶堵漏技术研究[J]. 钻井液与完井液,2023,40(1):47-53.

    YANG Lili, WU Yunpeng, JIANG Guancheng, et al. Lost circulation material and technology research of self-healing hydrogel[J]. Drilling Fluid & Completion Fluid, 2023, 40(1):47-53.
    [22] 朱立鑫, 黄维安, 段文广,等. 玛湖区块易漏地层防漏堵漏技术[J]. 钻井液与完井液,2020,37(4):469-475.

    ZHU Lixin, HUANG Weian, DUAN Wenguang,et al. Study and Application of Technology for Preventing and Controlling Mud Losses in Mahu Block[J]. Drilling Fluid & Completion Fluid, 2020, 37(4):469-475.
  • 加载中
图(2) / 表(8)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  12
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-04
  • 修回日期:  2025-01-16
  • 刊出日期:  2025-06-12

目录

    /

    返回文章
    返回