Drag Reducing Performance of a Nanomodified Material in Water Based Drilling Fluids
-
摘要: 水基钻井液在小井眼环空流动时波动性大,与井壁、钻具界面阻力大,导致流动能量损耗和钻井液当量循环密度(ECD)大,易引发井漏、卡钻等事故。以纳米二氧化硅为原料,接枝改性合成水基钻井液减阻剂DRA-1,并开展减阻性能研究,发现DRA-1具有降低钻井液流动阻力与改善钻井液流动流型的作用。结果表明,在基浆中加入3%DRA-1后,流性指数为0.5064,增幅达366.7%,稠度系数为0.4847 Pa·sn,降幅达90.6%,极压润滑系数降低率达81.82%,经120℃热滚16 h后减阻效果进一步提高,证明DRA-1具有抗高温能力;以相同条件在自制钢片和聚四氟乙烯板上流动时,DRA-1对基浆流动性的改善效果显著优于现场同类材料,具有更好的流动性;基于A井生产资料,在水基钻井液中加入1%DRA-1后,压耗降低1.937 MPa,降低率达21.61%,在整个井深范围也表现出更低的ECD,宏观上反映出DRA-1对钻井效率和安全性的提升,这对钻井现场提高经济效益和避免作业事故具有重要意义。Abstract: The flow of water based drilling fluids in slim holes fluctuate significantly and the interface resistance between the drilling fluids and the wellbore/drilling tools is high, resulting in high flow energy loss and high equivalent circulation density (ECD) which in turn cause mud losses and stuck pipe to happen. A drag reducer DRA-1 for water based drilling fluids was synthesized with nano silica as the raw material through graft-modification, and its performance was studied. In laboratory experiment, it was found that a base mud treated with 3% DRA-1 has its flow index increased by 366.7% to 0.5064, the consistency coefficient reduced by 90.6% to 0.4847 Pa·sn, and the extreme pressure coefficient of friction reduced by 81.82%. After hot rolling at 120℃ for 16 hours, the extreme pressure coefficient of friction was further reduced, indicating that DRA-1 is resistant to high temperature. When the DRA-1 treated base mud was flowing under the same conditions on a self-made steel plate and a polytetrafluoroethylene plate respectively, DRA-1 performed much better than the same type of field additives in improving the flow behavior of the mud. Operation data obtained from the well A showed that by adding 1% DRA-1 in the water based drilling fluid, the pressure loss along the circulation system was reduced by 1.937 MPa, a reduction rate of 21.61%, and lower ECD was obtained in the whole drilling operation, indicating that DRA-1 helped increase the drilling efficiency and safety, and this is very important to the increase of economic benefits and the avoidance or drilling accidents.
-
Key words:
- Water based drilling fluid /
- Nanomaterial /
- Drag reducing in flow /
- Lubricity /
- ECD
-
表 1 拟合R2结果表
体系 热滚前 热滚后 体系 热滚前 热滚后 4%基浆 0.4578 0.9887 +1%Lub-1 0.8362 0.9207 +0.5%DRA-1 0.8482 0.9832 +3%Lub-1 0.8122 0.9684 +1%DRA-1 0.8324 0.9754 +0.5%PAO 0.9072 0.9744 +3%DRA-1 0.8657 0.9978 +1%PAO 0.9305 0.9544 +0.5%Lub-1 0.7853 0.9254 +3%PAO 0.9271 0.9085 表 2 不同该体系的极压润滑系数计算结果对比
体系 热滚前 120℃、16 h 极压润
滑系数极压润滑系数
降低率/%极压润
滑系数极压润滑系数
降低率/%4%基浆 0.55 0.48 +0.5%DRA-1 0.15 72.73 0.07 85.42 +1%DRA-1 0.12 78.18 0.04 91.67 +3%DRA-1 0.10 81.82 0.03 93.75 +0.5%Lub-1 0.19 65.45 0.11 77.08 +1%Lub-1 0.17 69.09 0.09 81.25 +3%Lub-1 0.12 78.18 0.07 85.42 +0.5%PAO 0.40 27.27 0.32 33.33 +1%PAO 0.38 30.91 0.31 35.42 +3%PAO 0.36 34.55 0.35 27.08 表 3 不同钻井液通过中压滤失形成泥饼的黏滞系数
体系 热滚前 120℃、16 h 黏滞
系数黏滞系数
降低率/%黏滞
系数黏滞系数
降低率/%4%基浆 0.0963 0.0875 +0.5%DRA-1 0.0262 72.79 0.0175 80.00 +1%DRA-1 0.0437 54.62 0.0175 80.00 +3%DRA-1 0.0262 72.79 0.0262 70.06 +0.5%Lub-1 0.0612 36.45 0.0349 60.11 +1%Lub-1 0.0787 18.28 0.0262 70.06 +3%Lub-1 0.0349 63.76 0.0262 70.06 +0.5%PAO 0.0699 27.41 0.0349 60.11 +1%PAO 0.0699 27.41 0.0262 70.06 +3%PAO 0.0787 18.28 0.0787 10.06 表 4 在钢片和聚四氟乙烯板上相同消耗量下的流动对比
流动界面 类型 消耗量/
mL流动
耗时/s流动距离/
mm流动速度/
mm·s−1钢片 基浆 3 9.24 34 3.68 +1%DRA-1 3 20.68 100 4.84 +1%Lub-1 3 10.87 30 2.76 +1%PAO 3 9.55 45 4.71 聚四氟
乙烯板基浆 2 39.64 42 1.06 +1%DRA-1 2 15.88 58 3.65 +1%Lub-1 2 18.43 51 2.77 +1%PAO 2 18.77 56 2.98 表 5 在钢片和聚四氟乙烯板上相同距离下的流动对比
流动界面 类型 流动距离/
mm消耗量/
mL流动
耗时/s流动速度/
mm·s−1钢片 基浆 100 8 由于加量不一致,
无法计算+1%DRA-1 100 3 +1%Lub-1 100 9 +1%PAO 100 5 聚四氟
乙烯板基浆 76 3 65.65 1.16 +1%DRA-1 76 3 6.36 11.95 +1%Lub-1 76 3 28.25 2.69 +1%PAO 76 3 15.35 4.95 表 6 DRA-1在现场水基钻井液体系中的流变参数
减阻剂 实验
条件AV/
mPa·sPV/
mPa·sYP/
Pa未加入 热滚后 34.5 22 12.5 +1%DRA-1 120℃、16 h 26.0 18 8.0 -
[1] JIANG G C, SUN J S, HE Y B, et al. Novel water-based drilling and completion fluid technology to improve wellbore quality during drilling and protect unconventional reservoirs[J]. Engineering, 2022, 18:129-142. doi: 10.1016/j.eng.2021.11.014 [2] ENDRIKAT S, NEWTON R, MODESTI D, et al. Reorganisation of turbulence by large and spanwise-varying riblets[J]. Journal of Fluid Mechanics, 2022, 952:A27. doi: 10.1017/jfm.2022.897 [3] MARTIN S, BHUSHAN B. Fluid flow analysis of continuous and segmented riblet structures[J]. RSC Advances, 2016, 6(13):10962-10978. doi: 10.1039/C5RA20944G [4] 孙卫红, 刘波, 晏欣. 聚氨酯-丙烯酸酯柔性壁的减阻性能[J]. 高分子材料科学与工程,2017,33(9):59-64.SUN Weihong, LIU Bo, YAN Xin. Drag reduction properties of Polyurethane-Poly (acrylate) hybrid emulsions[J]. Polymer Materials Science & Engineering, 2017, 33(9):59-64. [5] LI L C, LIU B, HAO H L, et al. Investigation of the drag reduction performance of bionic flexible coating[J]. Aip Publishing, 2020, 32(8):084103. [6] CHEN D K, CUI X X, LIU X L, et al. Bionic gradient flexible fish skin acts as a passive dynamic micro-roughness to drag reduction[J]. Surface and Coatings Technology, 2023, 457:129337. doi: 10.1016/j.surfcoat.2023.129337 [7] CHEN G Y, SUN T S, YANG S Q, et al. A study on the cavitating flow around an elliptical disk-shaped cavitator for non-body-of-revolution underwater vehicles[J]. Engineering Applications of Computational Fluid Mechanics, 2023, 17(1):2159882. doi: 10.1080/19942060.2022.2159882 [8] JIA H X, XIE R S, ZHOU Y J. Experimental investigation of the supercavitation and hydrodynamic characteristics of High-Speed projectiles with hydrophobic and hydrophilic coatings[J]. Fluids, 2022, 7(12):363. doi: 10.3390/fluids7120363 [9] SOKHAL K S, DASAROJU G, BULASARA V K. Formation, stability and comparison of water/oil emulsion using gum Arabic and guar gum and effect of aging of polymers on drag reduction percentage in water/oil flow[J]. Vacuum, 2019, 159:247-253. doi: 10.1016/j.vacuum.2018.10.044 [10] KAUR H, SINGH G, JAAFARAZURAIEN-BT J. Study of drag reduction ability of naturally produced polymers from a local plant source[C]//Paper presented at the International Petroleum Technology Conference. Beijing, China, 2013: IPTC-17207-MS. [11] DOS SANTOS W R, SPALENZA CASER E, SOARES E J, et al. Drag reduction in turbulent flows by diutan gum: a very stable natural drag reducer[J]. Journal of Non-Newtonian Fluid Mechanics, 2020, 276:104223. doi: 10.1016/j.jnnfm.2019.104223 [12] 杨贤程, 任兰庆, 刘飞, 等. 水相减阻用聚氧化乙烯的研究进展[J]. 节能,2020,39(4):158-162.YANG Xiancheng, REN Lanqing, LIU Fei, et al. Research progress in performance and application of PEO for water phase drag reduction[J]. Energy Conservation, 2020, 39(4):158-162. [13] 唐璇, 任蕊, 雷珂, 等. 原位聚合法制备聚α-烯烃减阻剂微囊的工艺研究[J]. 应用化工,2017,46(12):2370-2373.TANG Xuan, REN Rui, LEI Ke, et al. Study on preparation of coated poly alpha olefin drag reduction agent microcapsules by insitu polymerization[J]. Applied Chemical Industry, 2017, 46(12):2370-2373. [14] SREEDHAR I, REDDY N S, RAHMAN S A, et al. Drag reduction studies in water using polymers and their combinations[J]. Materials Today Proceedings, 2020, 24, Part 2: 601-610. [15] RODRIGUES R K, SILVA L A S, VARGAS S G, et al. Drag reduction by wormlike micelles of a biodegradable and Non‐biodegradable surfactants[J]. Journal of Surfactants and Detergents, 2019, 23(1):21-40. [16] 王青会, 刘冬洁, 魏进家. 阳离子Gemini表面活性剂/水杨酸钠溶液的黏度特性[J]. 华东理工大学学报(自然科学版),2018,44(2):162-167.WANG Qinghui, LIU Dongjie, WEI Jinjia. Viscosity of cationic Gemini surfactant/NaSal solutions[J]. Journal of East China University of Science and Technology(Natural Science Edition), 2018, 44(2):162-167. [17] 李恩田, 吉庆丰, 王丰海, 等. 两性表面活性剂的湍流减阻性能与流场分析[J]. 中国科技论文,2020,15(4):444-448.LI Entian, JI Qingfeng, WANG Fenghai, et al. Turbulence drag reduction performance and flow field analysis of amphoteric surfactants[J]. China Sciencepaper, 2020, 15(4):444-448. [18] NI X X, JIANG G C, FAN L, et al. Synthesis of an amphiphobic nanofluid with a novel structure and its wettability alteration on low-permeability sandstone reservoirs[J]. Energy & Fuels, 2018, 32(4):4747-4753. [19] 陈楚君. 改性纳米聚硅涂层的制备及其减阻性能研究[D]. 南京: 东南大学, 2022.CHEN Chujun. Preparation of modified nano-polysilicon coating and its drag-reduction performance[D]. Nanjing: Southeast University, 2022. [20] LI X L, WANG K, LU Y J, et al. Compatibility and efficiency of hydrophilic/hydrophobic nano silica as rheological modifiers and fluid loss reducers in water-based drilling fluids[J]. Geoenergy Science and Engineering, 2024, 234:212628. doi: 10.1016/j.geoen.2023.212628 -