Preparation of a Drilling Fluid Degradable Cuttings Carrying Agent and Its Test in 10,000-Meter Deep Wells
-
摘要: 在大斜度井、水平井或大尺寸井眼中,因钻井液的携岩能力不足,钻井岩屑容易向下井壁或井底堆积,导致钻具摩阻增大、起下钻困难、井下漏失甚至卡钻等井下复杂情况,因此,井眼清洁是实现在大斜度井、水平井或大尺寸井眼作业安全与效率的关键技术之一。用脂肪族聚酯类聚合物与高分子共聚物共混反应,研制了一种可大幅提升钻井液携岩能力的纤维携岩剂,性能评价实验表明,在加量为0.2%携岩剂的实验浆体中岩屑沉降时间由原来的4.12 s增加至19.85 s;该携岩剂在水相和油相中具有良好的分散性;经120℃热滚16 h后在清水和白油中的降解率分别为95.48%和89.87%,且降解后对钻井液性能不造成影响。现场试验表明,该携岩技术能够大幅提升钻井液的携岩能力,有效携带出大尺寸井眼或水平井段中的岩屑或掉块,提高井眼清洁度,为安全、高效钻井提供保障。Abstract: In highly deviated wells, horizontal wells or large diameter wells, drilled cuttings are likely to accumulate on the lower side or at the bottom of the well due to insufficient cuttings carrying capacity of the drilling fluid. This will lead to complex downhole situations such as an increase in the friction of the drill string movement, difficulties in tripping, downhole lost circulation and even pipe sticking. Hole cleaning is therefore one of the key technologies to achieve operation safety and efficiency in highly deviated wells, horizontal wells or large diameter wells. A fiber cuttings-carrying agent that can significantly improve the cuttings carrying capacity of a drilling fluid was developed by blending and reacting an aliphatic polyester polymer with a high molecular weight copolymer. Results of performance evaluation experiments show that in the experimental slurry with 0.2% of the cuttings-carrying agent, the settling time of the cuttings increases from the original 4.12 sec to 19.85 sec. This cuttings-carrying agent has good dispersibility in both aqueous phase and oil phase. After hot rolling at 120℃ for 16 h, the degradation rates in clean water and white oil are 95.48% and 89.87% respectively, and the degradation does not affect the performance of the drilling fluid. Field tests show that this cuttings-carrying technology can significantly improve the cuttings-carrying capacity of the drilling fluid, effectively carry drilled cuttings or sloughing rock pieces out of large diameter wells or horizontal well sections, improve the wellbore cleanliness, and provide a guarantee for safe and efficient drilling.
-
Key words:
- Drilling fluid /
- Cuttings carrying agent /
- Hole cleaning /
- Degradable
-
表 1 不同实验浆体的携岩实验评价
浆体
编号实验浆体配方 岩屑沉降
时间/s岩屑沉降
速度/(cm/s)1# 清水 1.74 13.22 2# 清水+0.25%XC+0.15%PAC-LV 4.12 5.58 3# 2#+0.2%携岩剂 19.85 1.16 4# 2#+0.4%携岩剂 24.35 0.94 5# 2#+0.6%携岩剂 33.38 0.69 注:①实验用250 mL标准量筒0至250 mL刻度的行程为230 mm;②实验岩屑为PDC钻头实钻川南龙马溪地层(黑色页岩)振动筛返出岩屑,呈薄片状、成型度较好,尺寸为(8~10) mm×(4~6)mm×(1~3) mm;③实验用携岩剂长度为3 mm。 表 2 不同尺寸纤维携岩剂携岩实验评价
浆体编号 实验浆体配方 岩屑沉降时间/s 6# 2#+0.2%携岩剂(3 mm) 19.85 7# 2#+0.2%携岩剂(5 mm) 29.11 8# 2#+0.2%携岩剂(10 mm) 46.53 表 3 携岩剂降解后对水基钻井液和油基钻井液性能的影响
钻井液 ρ/g·cm−3 AV/mPa·s PV/mPa·s YP/Pa Gel/(Pa/Pa) FLAPI/mL pH 碱度 聚磺水基钻井液 2.09 48.0 38.0 10.0 2.0/19.0 1.5 10.0 聚磺水基钻井液+0.5%携岩剂 2.09 47.0 37.5 9.5 2.0/20.0 1.6 9.5 白油基钻井液 2.00 47.5 40.0 7.5 1.5/5.0 0.9 572 白油基钻井液+0.5%携岩剂 2.00 46.5 39.5 7.0 2.0/5.0 0.8 465 表 4 SDCK1井携砂前后钻井液性能
工况 ρ/
g·cm−3AV/
mPa·sPV/
mPa·sYP/
PaGel/
Pa/PaFLAPI/
mLpH 携砂前 1.65 47.0 37.0 10.0 2.0/5.0 2.4 8.5 携砂后 1.65 47.5 38.0 9.5 2.0/5.0 2.4 8.5 -
[1] 刘成文, 李兆敏. 钻井过程中岩屑运移模型研究进展[J]. 钻井液与完井液,2019,36(6):663-671.LIU Chengwen, LI Zhaomin. Advances of cuttings transport models during oil drilling[J]. Drilling Fluid & Completion Fluid, 2019, 36(6):663-671. [2] 常晓峰, 孙金声, 王清臣. 水平井和斜井井眼清洁技术研究进展及展望[J]. 钻井液与完井液,2023,40(1):1-19.CHANG Xiaofeng, SUN Jinsheng, WANG Qingchen. Hole cleaning technology for horizontal and deviated drilling: progress made and prospect[J]. Drilling Fluid & Completion Fluid, 2023, 40(1):1-19. [3] 王清臣, 张建卿, 胡祖彪, 等. 长庆气田小井眼钻井液技术研究与应用[J]. 钻井液与完井液,2020,37(6):746-752.WANG Qingchen, ZHANG Jianqing, HU Zubiao, et al. Study and application of drilling fluid technology for slim hole drilling in Changqing gas field[J]. Drilling Fluid & Completion Fluid, 2020, 37(6):746-752. [4] 刘清友, 敬俊, 祝效华. 钻柱与实钻水平井眼接触形态及摩阻影响分析[J]. 西南石油大学学报(自然科学版),2017,39(5):163-169.LIU Qingyou, JING Jun, ZHU Xiaohua. Analysis on contact form and friction influence between drill string and actual horizontal borehole[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2017, 39(5):163-169. [5] 李传武, 兰凯, 杜小松, 等. 川南页岩气水平井钻井技术难点与对策[J]. 石油钻探技术,2020,48(3):16-21.LI Chuanwu, LAN Kai, DU Xiaosong, et al. Difficulties and countermeasures in horizontal well drilling for shale gas in Southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(3):16-21. [6] 姜政华, 孙钢, 陈士奎, 等. 南川页岩气田超长水平段水平井钻井关键技术[J]. 石油钻探技术,2022,50(5):20-26.JIANG Zhenghua, SUN Gang, CHEN Shikui, et al. Key drilling technologies for horizontal wells with ultra-long horizontal sections in Nanchuan shale gas field[J]. Petroleum Drilling Techniques, 2022, 50(5):20-26. [7] 蔡明杰, 罗鑫, 陈力力, 等. 万米深井SDCK1井超大尺寸井眼钻井技术[J]. 石油钻探技术,2024,52(2):87-92.CAI Mingjie, LUO Xin, CHEN Lili, et al. Ultra-Large borehole drilling technologies of 10 000-Meter deep well SDCK1[J]. Petroleum Drilling Techniques, 2024, 52(2):87-92. [8] 冯义, 任凯, 刘俊田, 等. 深层煤层气水平井安全钻井技术[J]. 钻采工艺,2024,47(3):33-41.FENG Yi, REN Kai, LIU Juntian, et al. Safe drilling technology for deep CBM horizontal wells[J]. Drilling & Production Technology, 2024, 47(3):33-41. [9] 胡家森, 张艳, 蒋铭坤. 马2-1H 典型水平井复杂情况处理及预防[J]. 石油钻采工艺,2012,34(6):23-27.HU Jiasen, ZHANG Yan, JIANG Mingkun. Solutions and preventions of horizontal well problems[J]. Oil Drilling & Production Technology, 2012, 34(6):23-27. [10] 李明辉, 王凯, 王清臣. 水基钻井液固相分布与控制——以苏里格东部气井为例[J]. 钻井液与完井液,2023,40(5):611-616.LI Minghui, WANG Kai, WANG Qingchen. Study on solids distribution and control in water based drilling fluids-take gas wells in western Sulige as example[J]. Drilling Fluid & Completion Fluid, 2023, 40(5):611-616. [11] 王维. 冀东油田固相控制技术优化[J]. 钻井液与完井液,2018,35(1):47-52. doi: 10.3969/j.issn.1001-5620.2018.01.009WANG Wei. Study and application of optimized solids control technologies in Jidong oilfield[J]. Drilling Fluid & Completion Fluid, 2018, 35(1):47-52. doi: 10.3969/j.issn.1001-5620.2018.01.009 [12] 岳文翰, 肖勇军, 井翠, 等. 纤维滑溜水携砂技术研究及应用[J]. 钻采工艺,2023,46(5):151-156. doi: 10.3969/J.ISSN.1006-768X.2023.05.24YUE Wenhan, XIAO Yongjun, JING Cui, et al. Study and field application of fiber slickwater proppant carrying capacity[J]. Drilling & Production Technology, 2023, 46(5):151-156. doi: 10.3969/J.ISSN.1006-768X.2023.05.24 [13] 谢中成, 曹明辉, 王涛, 等. 井眼清洁技术在东海超深大斜度井中的应用[J]. 钻采工艺,2021,44(6):25-30.XIE Zhongcheng, CAO Minghui, WANG Tao, et al. Application of borehole cleaning technologies for ultra-deep and highly deviated wells in the East China sea[J]. Drilling & Production Technology, 2021, 44(6):25-30. [14] 张洪泉, 任中启, 董明健. 大斜度大位移井岩屑床的解决方法[J]. 石油钻探技术,1999,27(3):6-8.ZHANG Hongquan, REN Zhongqi, DONG Mingjian. Methods to solve cuttings bed in high-inclination, long-reached well[J]. Petroleum Drilling Techniques, 1999, 27(3):6-8. [15] 付建民, 张鹏, 郭磊, 等. 表层开窗侧钻时聚合物黏弹性对钻井液携带能力的影响[J]. 钻井液与完井液,2022,39(1):36-40.FU Jianmin, ZHANG Peng, GUO Lei, et al. Viscoelasticity of polymers and carrying capacity of drilling fluids when sidetracking through surface casing[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):36-40. [16] 刘玉婷, 管保山, 刘萍, 等. 纤维对压裂液携砂能力的影响[J]. 油田化学,2012,29(1):75-79.LIU Yuting, GUAN Baoshan, LIU Ping, et al. Effects of fiber on the proppant carrying capacity of fracturing fluid[J]. Oilfield Chemistry, 2012, 29(1):75-79. -