Oil-Based Drilling Fluid Technology for Ultra-Deep Extended Reach Wells in East China Sea
-
摘要: 针对东海宝云亭区块、平湖区块超深大位移井在钻井过程中因井壁失稳、井眼清洁困难、高摩阻扭矩引起的起下钻频繁遇阻、划眼困难等复杂情况严重影响钻井时效的难题,通过对杂色泥岩地层的特性分析,创新使用多级配强封堵技术和提高油基钻井液乳化稳定性来解决井壁失稳难题;以低剪切速率下钻井液φ6/φ3值为突破口,实现高效携岩,解决东海大位移井井眼清洁难题;自主研发润滑剂LUBE OB用于降低高载荷条件下钻井液的摩擦系数,减少钻具和套管磨损,首次成功应用于8000 m级的超深大位移井KQT-N。强封堵、高携岩、高润滑的油基钻井液技术将东海大位移井平均划眼率从16.7%降低至2.0%,大幅度提高了钻井时效,为东海油气田安全高效开发提供了技术支撑和保障。Abstract: Difficulties such as borehole wall instability, poor hole cleaning, drag encountered frequently during tripping due to high friction and torque, and difficult reaming, have been encountered in drilling operation in the Baoyunting block and the Pinghu block in east China Sea, which seriously affect the drilling efficiency. By analyzing the characteristics of the variegated mudstone formation, a technology using sized particles to achieve strong plugging was applied and the emulsification stability of the oil-based drilling fluid was improved to solve the problem of borehole wall instability. By optimizing the 6/3 r/min reading of the drilling fluid on six-speed viscometer, efficient cuttings carrying was achieved and the problem of hole cleaning in extended-reach well drilling in the East China Sea was solved. An independently developed lubricant LUBE OB was used to reduce the friction coefficient of the drilling fluid under high loads and the wear of drill strings and casings. This oil-based drilling fluid technology was successfully applied for the first time in drilling the 8000 m ultra-deep extended-reach well KQT-N. The oil-based drilling fluid has strong plugging capacity, high cuttings carrying efficiency and high lubrication performance, the use of which has reduced the time required for reaming in extended-reach wells in the East China Sea from 16.7% to 2.0%, greatly improving the drilling efficiency and providing technical support and guarantee for the safe and efficient development of the oil and gas fields in the East China Sea.
-
表 1 BYT-M井全岩和黏土矿物分析
井深/m 岩性 石英/
%钾长石/
%斜长石/
%方解石/
%黏土
矿物/%伊利石/
%高岭石/
%绿泥石/
%伊蒙
混层/%混层比/
%4300 棕色泥岩 21.1 1.4 1.9 1.8 73.8 14 12 4 70 65 3810 棕色泥岩 21.9 1.8 1.9 74.4 17 5 4 74 50 4300 绿灰色泥岩 24.5 2.0 2.7 70.8 19 13 8 60 55 3900 绿灰色泥岩 26.3 1.4 1.3 71.0 15 16 9 60 65 4600 棕色泥岩 22.5 1.6 2.0 2.4 71.5 14 12 4 70 65 表 2 油基钻井液封堵性能评价
封堵剂 填沙
目数FL/
mL侵入
深度/cm3%MOHGW+1%NASEAL-2
+3%EZCARB20~40 0 1.6 60~80 0 1.2 1%MOHGW+3%NASEAL-2
+3%EZCARB20~40 0 3.4 60~80 0 2.8 2%MOHGW+2%NASEAL-2
+3%EZCARB20~40 0 1.2 60~80 0 1.0 表 3 乳化剂加量对钻井液性能影响
乳化剂总加量/%
(主乳∶辅乳=4∶1)AV/
mPa·sPV/
mPa·sYP/
Paφ6/φ3 Es /
VFLHTHP/
mL4 36.0 28.0 8.0 6/5 664 2.6 5 42.5 29.0 12.5 8/6 726 2.2 6 42.0 32.0 10.0 10/8 859 1.8 7 50.0 34.0 16.0 15/14 860 2.0 表 4 有机土和提切剂对油基钻井液性能影响
有机土/
%提切剂/
%AV/
mPa·sPV/
mPa·sYP/
Paφ6/φ3 ES/
V1.0 0.5 36 30 6 6/5 746 1.0 38 30 8 8/6 753 1.5 1.0 42 32 10 10/8 896 1.5 45 34 11 10/9 806 -
[1] 郝婧, 张厚和, 李春荣, 等. 渤海海域油气勘探历程与启示[J]. 新疆石油地质,2021,42(3):328-336.HAO Jing, ZHANG Houhe, LI Chunrong, et al. Petroleum exploration history and Enlightenment in Bohai sea[J]. Xinjiang Petroleum Geology, 2021, 42(3):328-336. [2] 范洪军, 曹伟佳, 王夏斌, 等. 非均质储层井网匹配模式与井间剩余油分布研究[J]. 当代化工,2022,51(10):2348-2351.FAN Hongjun, CAO Weijia, WANG Xiabin, et al. Study on well pattern matching model and inter well remaining oil distribution in heterogeneous reservoirs[J]. Contemporary Chemical Industry, 2022, 51(10):2348-2351. [3] 刘智勤,徐加放,彭巍,等. 陵水区块超深水高性能恒流变油基钻井液技术[J]. 钻井液与完井液,2024,41(2):184-190. doi: 10.3969/j.issn.1006-5539.2018.06.011LIU Zhiqin, XU Jiafang, PENG Wei, et al. A high performance constant rheology oil based drilling fluid for ultra deep water drilling in Lingshui block[J]. Drilling Fluid& Completion Fluid, 2024, 41(2):184-190. doi: 10.3969/j.issn.1006-5539.2018.06.011 [4] 郭凯. 东海X区块大位移井提高井壁稳定性技术优化[J]. 化工管理,2023(34):161-164.GUO Kai. Optimization of oil-based mud in an extended reach well in the East China sea[J]. Chemical Enterprise Management, 2023(34):161-164. [5] 谢中成, 付建红, 李进, 等. 东海油气田超深大位移气井钻井关键技术[J]. 石油钻采工艺,2018,40(4):417-424.XIE Zhongcheng, FU Jianhong, LI Jin, et al. Key drilling technologies for the ultradeep extended reach well in East China Sea Oil and Gas Field[J]. Oil Drilling & Production Technology, 2018, 40(4):417-424. [6] 李治衡, 林海, 董平华, 等. 渤中区块火成岩地层钻井液优化研究[J]. 非常规油气,2019,6(3):81-86. doi: 10.3969/j.issn.2095-8471.2019.03.013LI Zhiheng, LIN Hai, DONG Pinghua, et al. Study on drilling fluid optimization in igneous rock formation in Bozhong block[J]. Unconventional Oil & Gas, 2019, 6(3):81-86. doi: 10.3969/j.issn.2095-8471.2019.03.013 [7] 曾佳, 程慧君. 无固相钻井液技术现状及发展趋势[J]. 辽宁化工,2022,51(3):388-390,441. doi: 10.3969/j.issn.1004-0935.2022.03.027ZENG Jia, CHENG Huijun. Research status and developing trends of solid free drilling fluid[J]. Liaoning Chemical Industry, 2022, 51(3):388-390,441. doi: 10.3969/j.issn.1004-0935.2022.03.027 [8] 张磊, 张羽臣, 董平华, 等. 渤海油田浅层大位移水平井钻井关键技术研究[J]. 非常规油气,2022,9(1):10-17.ZHANG Lei, ZHANG Yuchen, DONG Pinghua, et al. Research on key drilling technology of shallow extended reach horizontal well in Bohai Oilfield[J]. Unconventional Oil & Gas, 2022, 9(1):10-17. [9] 李红岩, 王鹏涛, 郭世炎, 等. 水基钻井液用新型页岩抑制剂的制备及性能研究[J]. 当代化工,2021,50(2):418-421.LI Hongyan, WANG Pengtao, GUO Shiyan, et al. Study on the preparation and properties of new shale inhibitors for water-based drilling fluid[J]. Contemporary Chemical Industry, 2021, 50(2):418-421. [10] 孙凯, 冉茂林, 李鑫. 成膜防塌钻井液技术研究与应用[J]. 钻采工艺,2021,44(4):104-109. doi: 10.3969/J.ISSN.1006-768X.2021.04.24SUN Kai, RAN Maolin, LI Xin. Research and application of film-forming anti-collapse drilling fluid system[J]. Drilling & Production Technology, 2021, 44(4):104-109. doi: 10.3969/J.ISSN.1006-768X.2021.04.24 -