Preparation and Properties of a Drilling Fluid Non-Fluorescent Flexible Plugging
-
摘要: 针对作为钻井液用柔性封堵剂的凝胶封堵剂对流变性能影响大、沥青封堵剂具有荧光效应而干扰录井的技术问题,以异佛尔酮二异氰酸酯IPDI、聚三亚甲基醚二醇PO3G、2-羟乙基二硫醚HEDS、二羟甲基丁酸DMBA为扩链剂,二月桂酸二丁基锡DBTEL为催化剂,糠醇FA为封端剂、三乙胺TEA为乳化剂,制备一种水性聚氨酯乳液封堵剂SMPU-1,并借助红外光谱仪、激光粒度分析仪和扫描电镜进行了分子结构表征、粒径分布和微观形貌分析。结果表明,高温作用后的SMPU-1颗粒仍呈纳微米级单分散状态,并具有软化变形的特性,在压差作用下,可被挤入岩石表面的微孔缝,从而实现致密封堵。封堵性能测试结果显示,SMPU-1适宜在140℃内使用,最佳添加浓度为4%。SMPU-1对钻井液的流变性能影响较小,在最高适用温度和最佳加量条件下,钻井液的常温中压滤失量为6.2 mL,高温高压滤失量为16 mL,具有良好的滤失造壁性能。Abstract: As flexible plugging agents used in drilling fluids, gel plugging agents have great effects on the rheology of the drilling fluids, and asphalt plugging agents have fluorescent effect that interferes with mud logging data acquisition. To solve these problems, a water-based polyurethane emulsion plugging agent SMPU-1 has been prepared with the following monomers: isophorone diisocyanate (IPDI), polytetramethylene ether glycol (PO3G), 2-hydroxyethyl disulfide (HEDS) and dimethylol butyric acid (DMBA) as the chain extenders, dibutyltin dilaurate (DBTDL) as the catalyst, furfuryl alcohol (FA) as the end-capping agent, and triethylamine (TEA) as the emulsifier. Using IR spectrometer, laser particle size analyzer and scanning electron microscope, the molecular structure of SMPU-1 was characterized, and the particle size distribution and the micromorphology of SMPU-1 analyzed. It was found that under the action of high temperature, the SMPU-1 particles are still in nano-micron monodisperse state, and become soft and deformed. Under the action of pressure, the SMPU-1 particles can be squeezed into and hence densely plug the micro-fractures on the surfaces of rocks. The results of the plugging performance test show that the optimum temperature for the SMPU-1 particles to function is 140°C or lower, and the optimum treatment of SMPU-1 is 4%. SMPU-1 has little effect on the rheology of drilling fluids. At the maximum applicable work temperature and the optimum dosage, the API filter loss of a drilling fluid is 6.2 mL, and the high temperature high pressure (HTHP) filter loss is 16 mL, indicating that the drilling fluid still has good filtration and wall-building properties.
-
表 1 钻井液流变性能和滤失性能测试结果
SMPU-1 /% T老化/℃ AV/mPa·s YP/Pa FLAPI/mL FLHTHP/mL 0 100 15.0 5.0 13.4 33.6 120 15.0 5.0 13.8 34.0 140 14.5 4.5 14.4 37.2 160 14.0 4.5 15.6 46.0 3.0 100 16.5 5.5 8.6 20.0 120 16.5 5.5 9.2 24.4 140 17.0 5.0 10.2 27.4 160 17.5 5.5 12.0 30.8 4.0 100 17.0 6.0 5.4 14.0 120 17.0 6.0 5.8 15.6 140 17.5 6.5 6.2 16.0 160 17.5 6.5 8.0 18.4 5.0 100 18.5 6.5 5.2 13.8 120 18.5 6.5 5.4 15.0 140 19.0 7.0 5.8 15.6 160 19.5 7.5 7.8 18.0 注:FLHTHP测试温度对应老化温度。 -
[1] 马天寿, 张赟, 邱艺, 等. 基于可靠度理论的斜井井壁失稳风险评价方法[J]. 石油学报,2021,42(11):1486-1498. doi: 10.7623/syxb202111008MA Tianshou, ZHANG Yun, QIU Yi, et al. Risk evaluation method of borehole instability of deviated wells based on reliability theory[J]. Acta Petrolei Sinica, 2021, 42(11):1486-1498. doi: 10.7623/syxb202111008 [2] 范翔宇, 蒙承, 张千贵, 等. 超深地层井壁失稳理论与控制技术研究进展[J]. 天然气工业,2024,44(1):159-176. doi: 10.3787/j.issn.1000-0976.2024.01.015FAN Xiangyu, MENG Cheng, ZHANG Qiangui, et al. Research progress in the evaluation theory and control technology of wellbore instability in ultra-deep strata[J]. Natural Gas Industry, 2024, 44(1):159-176. doi: 10.3787/j.issn.1000-0976.2024.01.015 [3] 石秉忠, 夏柏如, 林永学, 等. 硬脆性泥页岩水化裂缝发展的CT成像与机理[J]. 石油学报,2012,33(1):137-142. doi: 10.7623/syxb201201020SHI Bingzhong, XIA Bairu, LIN Yongxue, et al. CT imaging and mechanism analysis of crack development by hydration in hard-brittle shale formations[J]. Acta Petrolei Sinica, 2012, 33(1):137-142. doi: 10.7623/syxb201201020 [4] 折海成. 页岩井壁多因素扰动细观损伤特性及稳定性研究[D]. 西安: 西安理工大学, 2020.SHE Haicheng. Research on meso-damage characteristics and stability of shale borehole wall under the action of multi-factors disturbance[D]. Xi'an: Xi'an University of Technology, 2020. [5] 孙金声, 李贺, 吕开河, 等. 纳米材料提高水基钻井液页岩稳定性研究进展[J]. 中国石油大学学报(自然科学版),2024,48(2):74-82.SUN Jinsheng, LI He, LYU Kaihe, et al. Research progress on improving shale stability of water-based drilling fluid by nano-materials[J]. Journal of China University of Petroleum (Edition of Natural Science), 2024, 48(2):74-82. [6] 李佳. 井壁强化机理与承压封堵钻井液技术研究[D]. 青岛: 中国石油大学(华东), 2022.LI Jia. Wellbore strengthening mechanisms and drilling fluid technology for pressure bearing and plugging[D]. Qingdao: China University of Petroleum(East China), 2022. [7] SUDHARSAN J, KHARE S K. Pore pressure transmission test as measure of shale inhibition performance of nanoparticle additives in water based drilling fluids–a comprehensive review[J]. Materials Today: Proceedings, 2024, 99:8-14. doi: 10.1016/j.matpr.2023.04.148 [8] AL-SHARGABI M, DAVOODI S, WOOD D A, et al. Nanoparticle applications as beneficial oil and gas drilling fluid additives: a review[J]. Journal of Molecular Liquids, 2022, 352:118725. doi: 10.1016/j.molliq.2022.118725 [9] 项营, 王玺, 蒋官澄, 等. 反相乳液聚合法合成凝胶微球及其封堵性能评价[J]. 钻井液与完井液,2020,37(3):275-281. doi: 10.3969/j.issn.1001-5620.2020.03.002XIANG Ying, WANG Xi, JIANG Guancheng, et al. Gel microsphere: synthesis through inverse emulsion polymerization and evaluation of its plugging capacity[J]. Drilling Fluid & Completion Fluid, 2020, 37(3):275-281. doi: 10.3969/j.issn.1001-5620.2020.03.002 [10] 孔勇. 地层环境响应封堵材料研究与应用[J]. 钻井液与完井液,2022,39(6):677-684. doi: 10.12358/j.issn.1001-5620.2022.06.003KONG Yong. Study and application of formation environment responsive plugging material[J]. Drilling Fluid & Completion Fluid, 2022, 39(6):677-684. doi: 10.12358/j.issn.1001-5620.2022.06.003 [11] 徐哲, 孙金声, 吕开河, 等. 一种新型外柔内刚型封堵剂的研制[J]. 钻井液与完井液,2020,37(6):726-730. doi: 10.3969/j.issn.1001-5620.2020.06.008XU Zhe, SUN Jinsheng, LYU Kaihe, et al. Research and development of a novel internal rigid external Soft plugging agent[J]. Drilling Fluid & Completion Fluid, 2020, 37(6):726-730. doi: 10.3969/j.issn.1001-5620.2020.06.008 [12] XU H W, ZHU Y A, LIU Y H, et al. Temperature-sensitive polymer grafted with nano-SiO2 improves sealing and inhibition performance of shale water-based drilling fluid[J]. Colloids and Surfaces. a, Physicochemical and Engineering Aspects, 2024, 698:134531. doi: 10.1016/j.colsurfa.2024.134531 [13] 于雷, 张敬辉, 李公让, 等. 低活度强抑制封堵钻井液研究与应用[J]. 石油钻探技术,2018,46(1):44-48. doi: 10.11911/syztjs.2018031YU Lei, ZHANG Jinghui, LI Gongrang, et al. Research and application of plugging drilling fluid with low-activity and high inhibition properties[J]. Petroleum Drilling Techniques, 2018, 46(1):44-48. doi: 10.11911/syztjs.2018031 [14] 黎然, 李文哲, 张佳寅, 等. 万米深井SDCK1井上部超大尺寸井眼钻井液技术[J]. 石油钻探技术,2024,52(2):93-99. doi: 10.11911/syztjs.2024040LI Ran, LI Wenzhe, ZHANG Jiayin, et al. Drilling fluid technology for ultra-large wellbore in the upper part of 10 000-meter deep well SDCK1[J]. Petroleum Drilling Techniques, 2024, 52(2):93-99. doi: 10.11911/syztjs.2024040 [15] 胡进军. 物理封堵剂AquaSeal的室内评价及应用[J]. 钻采工艺,2019,42(1):90-92,103. doi: 10.3969/J.ISSN.1006-768X.2019.01.27HU Jinjun. Indoor evaluation and field application of a physical plugging agent AquaSeal[J]. Drilling & Production Technology, 2019, 42(1):90-92,103. doi: 10.3969/J.ISSN.1006-768X.2019.01.27 [16] 马丽华, 张驰, 邓小刚, 等. SEBS改性磺化沥青及降滤失性能评价[J]. 应用化工,2018,47(12):2577-2580. doi: 10.3969/j.issn.1671-3206.2018.12.006MA Lihua, ZHANG Chi, DENG Xiaogang, et al. SEBS' s modifing sulfonated asphalt and evaluation of filtrate reduction[J]. Applied Chemical Industry, 2018, 47(12):2577-2580. doi: 10.3969/j.issn.1671-3206.2018.12.006 [17] 赵冲, 张现斌, 邱正松, 等. 液体型妥尔油沥青酰胺树脂的合成及降滤失性能评价[J]. 钻井液与完井液,2021,38(5):616-622. doi: 10.12358/j.issn.1001-5620.2021.05.012ZHAO Chong, ZHANG Xianbin, QIU Zhengsong, et al. Synthesis of liquid tall oil asphalt amide resin and evaluation of its filtration control performance[J]. Drilling Fluid & Completion Fluid, 2021, 38(5):616-622. doi: 10.12358/j.issn.1001-5620.2021.05.012 [18] 白海鹏. 钻井液处理剂荧光问题的探讨[J]. 当代化工研究,2018(12):29-30. doi: 10.3969/j.issn.1672-8114.2018.12.017BAI Haipeng. Discussion on fluorescence of drilling fluid treatment agent[J]. Modern Chemical Research, 2018(12):29-30. doi: 10.3969/j.issn.1672-8114.2018.12.017 [19] 孙金声, 朱跃成, 白英睿, 等. 改性热固性树脂研究进展及其在钻井液领域应用前景[J]. 中国石油大学学报(自然科学版),2022,46(2):60-75.SUN Jinsheng, ZHU Yuecheng, BAI Yingrui, et al. Research progress of modified thermosetting resin and its application prospects in field of drilling fluids[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(2):60-75. [20] 刘锋报, 孙金声, 刘敬平, 等. 抗超高温220℃聚合物水基钻井液技术[J]. 钻井液与完井液,2024,41(2):148-154 doi: 10.12358/j.issn.1001-5620.2024.02.002LIU Fengbao, SUN Jinsheng, LIU Jingping, et al. A polymer water based drilling fluid for 220℃ bottomhole temperature[J]. Drilling Fluid Completion Fluid, 2024, 41(2):148-154. doi: 10.12358/j.issn.1001-5620.2024.02.002 -