留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅酸盐水泥石超高温干热环境热损伤规律

李小江 王越洋 肖京男 魏浩光 杨睿月

李小江,王越洋,肖京男,等. 硅酸盐水泥石超高温干热环境热损伤规律[J]. 钻井液与完井液,2025,42(2):247-254 doi: 10.12358/j.issn.1001-5620.2025.02.013
引用本文: 李小江,王越洋,肖京男,等. 硅酸盐水泥石超高温干热环境热损伤规律[J]. 钻井液与完井液,2025,42(2):247-254 doi: 10.12358/j.issn.1001-5620.2025.02.013
LI Xiaojiang, WANG Yueyang, XIAO Jingnan, et al.Thermal damage of set silicate cement in ultra-high temperature xerothermic environment[J]. Drilling Fluid & Completion Fluid,2025, 42(2):247-254 doi: 10.12358/j.issn.1001-5620.2025.02.013
Citation: LI Xiaojiang, WANG Yueyang, XIAO Jingnan, et al.Thermal damage of set silicate cement in ultra-high temperature xerothermic environment[J]. Drilling Fluid & Completion Fluid,2025, 42(2):247-254 doi: 10.12358/j.issn.1001-5620.2025.02.013

硅酸盐水泥石超高温干热环境热损伤规律

doi: 10.12358/j.issn.1001-5620.2025.02.013
基金项目: 国家自然科学基金联合基金项目“复杂环境下水泥环全生命周期密封理论与控制方法”(U22B6003);国家自然科学基金重大项目“干热岩地热资源开采机理与方法”(52192624)。
详细信息
    作者简介:

    李小江,博士,副研究员,1990年生,毕业于中国石油大学(北京)油气井工程专业,现主要从事钻井与固井技术研究工作。电话(010)56606576;E-mail:lixj.sripe@sinopec.com。

  • 中图分类号: TE256

Thermal Damage of Set Silicate Cement in Ultra-High Temperature Xerothermic Environment

  • 摘要: 煤炭气化与油页岩原位开采时井下为超高温干热环境,对油井水泥环的热稳定性提出了挑战。对此,探索了600℃长期干热环境下硅酸盐水泥石性能劣化规律,分析了微观结构特征与水化产物变化。研究结果表明,常规硅酸盐水泥石的抗压强度显著下降,孔隙度和渗透率增大,微观结构由凝胶结构转变为粒状结构,氢氧化钙和C—S—H凝胶消失,转变为硅酸二钙-γ、斜硅钙石和钙铁石等相态。加砂水泥石孔隙度与渗透率均随养护时间呈现上升趋势,凝胶结构基本消失,以粒状和微小絮状、针状晶体结构为主,氢氧化钙和C—S—H凝胶消失,转变为大量斜硅钙石,石英参与水化反应程度低,抑制损伤效果不明显,硅酸盐水泥石无法满足原位开采高温干热环境的密封要求。初步探索了SCKL改性硅酸盐水泥与铝酸盐水泥2种体系600℃长期干热环境适应性,铝酸盐水泥有望成为原位开采超高温干热环境固井材料,但仍需进一步研究提高其综合性能。研究结果为基于油页岩与煤炭气化等原位开采工况下封固段地层特性优选水泥浆、改善水泥石综合性能和开发新型耐高温高压固井材料提供参考。

     

  • 图  1  600℃干热环境下常规水泥石长期强度发育

    图  2  600℃干热环境下常规水泥石孔渗参数劣化分析

    图  3  常规水泥石扫描电镜分析结果

    图  4  常规水泥石矿物组成分析

    图  5  600℃加砂水泥石抗压强度发育

    图  6  600℃加砂水泥石孔渗参数劣化分析

    图  7  加砂水泥石扫描电镜分析结果图

    图  8  加砂水泥石矿物组成分析

    图  9  600℃干热环境下SCKL水泥石抗压强度

  • [1] JIANG T, GENG C Z, YAO X, et al. Long-term thermal performance of oil well cement modified by silica flour with different particle sizes in HTHP environment[J]. Construction and Building Materials, 2021, 296:123701. doi: 10.1016/j.conbuildmat.2021.123701
    [2] 卢红杰. 油页岩干馏技术影响因素及工业发展展望[J]. 化学工程师,2012,26(8):42-45. doi: 10.3969/j.issn.1002-1124.2012.08.013

    LU Hongjie. Development prospect on retorting technology in fluencing factors and industry of oil shale[J]. Chemical Engineer, 2012, 26(8):42-45. doi: 10.3969/j.issn.1002-1124.2012.08.013
    [3] 傅丛, 丁华, 陈文敏. 我国油页岩与煤共生资源分布及综合利用[J]. 煤质技术,2021,36(3):1-13. doi: 10.3969/j.issn.1007-7677.2021.03.001

    FU Cong, DING Hua, CHEN Wenmin. Resources distribution and comprehensive utilization of oil shale and coal symbiosis in China[J]. Goal Quality Technology, 2021, 36(3):1-13. doi: 10.3969/j.issn.1007-7677.2021.03.001
    [4] 曾帅, 周怀荣, 钱宇. 煤热解制油和油页岩制油技术评述与比较分析[J]. 化工学报,2017,68(10):3658-3668.

    ZENG Shuai, ZHOU Huairong, QIAN Yu. Review and techno-economic analysis of coal pyrolysis to liquid and oil shale to liquid processes[J]. CIESC Jorunal, 2017, 68(10):3658-3668.
    [5] 邹才能, 陈艳鹏, 孔令峰, 等. 煤炭地下气化及对中国天然气发展的战略意义[J]. 石油勘探与开发,2019,46(2):195-204.

    ZOU Caineng, CHEN Yanpeng, KONG Lingfeng, et al. Underground coal gasification and its strategic significance to the development of natural gas industry in China[J]. Petroleum Exploration and Development, 2019, 46(2):195-204.
    [6] 丁建新, 席岩, 蒋记伟, 等. 高温及超高温下水泥石力学及孔渗特性变化规律[J]. 钻井液与完井液,2022,39(6):754-760.

    DING Jianxin, XI Yan, JIANG Jiwei, et al. Changes of mechanics and characteristics of porosity and permeability of set cement at high and Ultra-High temperatures[J]. Drilling Fluid & Completion Fluid, 2022, 39(6):754-760.
    [7] PAIVA M D M, SILVA E C C M, MELO D M A, et al. A geopolymer cementing system for oil wells subject to steam injection[J]. Journal of Petroleum Science and Engineering, 2018, 169:748-759. doi: 10.1016/j.petrol.2018.06.022
    [8] LORENZONI R, PACIORNIK S, SILVA F A. Characterization by microcomputed tomography of class G oil well cement paste exposed to elevated temperatures[J]. Journal of Petroleum Science and Engineering, 2019, 175:896-904. doi: 10.1016/j.petrol.2019.01.022
    [9] 姚晓, 葛荘, 汪晓静, 等. 加砂油井水泥石高温力学性能衰退机制研究进展[J]. 石油钻探技术,2018,46(1):17-23. doi: 10.11911/syztjs.2018008

    YAO Xiao, GE Zhuang, WANG Xiaojing, et al. Research progress of degradation of mechanical properties of sand-containing cement in high temperature regimes[J]. Petroleum Drilling Techniques, 2018, 46(1):17-23. doi: 10.11911/syztjs.2018008
    [10] 党冬红,刘宁泽,王丹,等. 干热岩工况下水泥高温劣化性能的调控措施[J]. 钻井液与完井液,2023,40(2):368-375.

    DANG Donghong, LIU Ningze, WANG Dan, et al. Control measures of cement high-temperature deterioration performance under dry-hot rock conditions[J]. Drilling Fluid & Completion Fluid,2023,40(2):368-375.
    [11] 陈毅,张彬奇,刘鹏,等. 超高温热循环作用下水泥环完整性及界面力学性能衰退规律[J]. 钻井液与完井液,2024,41(1):105-111.

    CHEN Yi, ZHANG Binqi, LIU Peng, et al. Cement sheath integrity and decay law of interface mechanical properties under ultra-high temperature thermal cycling[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):105-111
    [12] 曾义金. 干热岩热能开发技术进展与思考[J]. 石油钻探技术,2015,43(2):1-7.

    ZENG Yijin. Technical progress and thinking for development of hot dry rock (HDR) geothermal resources[J]. Petroleum Drilling Techniques, 2015, 43(2):1-7
    [13] 武治强, 岳家平, 吴怡, 等. 超高温高压井固井水泥石养护方法及力学性能研究[J]. 重庆科技学院学报(自然科学版),2021,23(4):71-76.

    WU Zhiqiang, YUE Jiaping, WU Yi, et al. Study on curing method and mechanical properties of cement stone for ultra high temperature and high pressure well cementing[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2021, 23(4):71-76.
    [14] 武治强, 吴怡, 岳家平, 等. 超高温条件下热稳定剂对水泥环完整性影响研究[J]. 重庆科技学院学报(自然科学版),2021,23(5):48-52,58.

    WU Zhiqiang, WU Yi, YUE Jiaping, et al. Study on the effect of heat stabilizer on the integrity of cement sheath under ultra-high temperature[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2021, 23(5):48-52,58.
    [15] 肖京男, 李小江, 周仕明, 等. 干热岩超高温防衰退水泥浆体系及应用[J]. 钻井液与完井液,2024,41(1):92-97.

    XIAO Jingnan, LI Xiaojiang, ZHOU Shiming, et al. Ultra-high temperature resistant cement slurry and its application in hot dry rock[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):92-97.
  • 加载中
图(9)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  8
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-24
  • 修回日期:  2024-11-28
  • 刊出日期:  2025-04-17

目录

    /

    返回文章
    返回