The Toughening Mechanisms of Tough Cement Slurries for the Underground Gas Storage in North China
-
摘要: 储气库作为中国“能源保供”的重点工程,具备季节调峰、事故应急及国家能源战略储备三大功能。华北储气库普遍具有地质条件复杂、埋藏深、井底温度高、密度窗口窄、漏失风险大、一次封固段长、井筒长期密封完整性要求高等固井难点,普通的水泥浆难以满足该条件下的固井要求。通过大量实验研究出一种多功能活性增韧材料HFOC,探究了加入HFOC的韧性水泥浆的综合性能及其增韧机理,形成一套适用于储气库固井的韧性水泥浆体系,并优化了预应力固井等工艺技术。结果表明,韧性水泥浆体系密度范围为1.88~1.92 g/cm3,稠化时间可调,直角稠化,沉降密度差为0,游离液为0,API失水量不大于50 mL,7 d弹性模量小于6.48 GPa,80℃、24 h抗压强度大于14 MPa。从物理和化学两方面探索了韧性水泥浆的增韧机理,水泥成分中铁铝酸四钙对水泥石的韧性和力学性能有积极影响,铁铝酸四钙含量的增加可以更好地防止微裂纹扩展,提高水泥环的密封完整性。该项技术成功应用于华北储气库生产套管固井,固井质量满足储气库要求,可为其他储气库固井提供技术支持和借鉴。Abstract: As the important engineering of China’s “energy resource supply guarantee”, underground gas storage (UGS) has three functions, which are seasonal peak shaving, emergency response to accidents and national energy strategic reserve. The formations into which the UGSs have been built in north China generally have such characteristics as complex geological conditions, deep buried depths, high bottom hole temperatures, narrow density windows, high fluid loss risks, long intervals that need to be cemented in one job, as well as rigorous requirements for borehole integrity because of long-term sealing of the wellbores, etc. Common cement slurries do not have the required properties to satisfy the requirements of well cementing under these conditions. To solve these problems, a multi-functional active toughening material HFOC was developed through extensive experimental research. The general performance and the toughing mechanisms of tough cement slurries were investigated. Using HFOC, a tough cement slurry was formulated for use in cementing UGS wells, and the well cementing techniques, such as prestressed well cementing, were also optimized for the use of the new cement slurry. Laboratory experimental results show that the tough cement slurry has its density adjustable between 1.88 g/cm3 and 1.92 g/cm3, the thickening time of the cement slurry is adjustable and the cement slurry shows right-angle thickening behavior, the top and bottom density difference of the cement slurry is zero, no free water is observed in the cement slurry, the API filter loss is less than 50 mL, the 7-day elastic modulus is less than 6.48 GPa, and the 80℃/24-hour compressive strength is greater than 14 MPa. The toughening mechanisms of the tough cement slurry are investigated from both physical and chemical aspects. It was found that tetracalcium aluminoferrite (C4AF) in a cement has positive effects on the toughness and mechanical properties of the set cement; an increase in the content of C4AF in the cement can better prevent the extension of the micro fractures in the set cement, thereby improving the sealing integrity of the cement sheath. This technology has been successfully applied in cementing the production casing in the UGS drilling in north China, and the quality of the well cementing job has satisfied the requirements of UGS construction. This technology can be used as a technical support and reference for the cementing other UGSs.
-
表 1 韧性水泥浆体系性能
ρ/
g/cm3FLAPI/
mLt稠化/
min沉降稳定性/
g/cm3游离液/
%流动度/
cm1.88 42 241 0 0 22.0 1.90 47 203 0 0 21.5 1.92 44 172 0 0 21.0 注:水泥浆配方为G级油井水泥+增韧材料+防窜剂+降失水剂+早强剂+缓凝剂+分散剂+消泡剂+水;稠化实验条件为120℃、75 MPa、40 min。 表 2 80℃下不同增韧材料加量的水泥石抗压强度
试样 增韧
材料/%流动度/
cmp1 d/
MPap3 d/
MPap7 d/
MPap14 d/
MPaClass-G 0 23.0 18.1 22.8 28.3 30.3 HFOC-1 1.5 22.5 23.1 26.4 29.8 31.8 HFOC-2 3.0 22.0 26.8 31.1 32.9 32.9 HFOC-3 4.5 21.0 28.1 31.9 33.4 34.5 HFOC-4 6.0 20.5 29.2 33.1 34.1 35.2 表 3 G级油井水泥石和韧性油井水泥石的三轴力学性能
试样 峰值差应力/MPa 峰值应变/% 7 d弹性模量/GPa Class-G 33.85 2.82 8.45 HFOC-1 44.13 3.32 7.52 HFOC-2 44.25 3.53 6.63 HFOC-3 50.82 3.88 6.48 HFOC-4 43.26 3.65 5.68 表 4 韧性油井水泥石与G级水泥石试样 在100~800℃之间的质量损失
试样 不同温度段(℃)的质量损失率/% 100~150 150~400 400~600 600~800 Class-G 6.86 2.87 4.51 2.24 HFOC-1 7.06 2.98 4.39 2.13 HFOC-2 7.43 3.14 3.99 1.99 HFOC-3 7.48 3.19 3.88 1.79 HFOC-4 8.17 3.34 3.63 1.54 -
[1] 曹洪昌, 王野, 田惠, 等. 苏桥储气库群老井封堵浆及封堵工艺研究与应用[J]. 钻井液与完井液,2014,31(2):55-58.CAO Hongchang, WANG Ye, TIAN Hui, et al. Plugging of old wells for building UGS in Suqiao[J]. Drilling Fluid & Completion Fluid, 2014, 31(2):55-58. [2] 钟福海, 刘硕琼, 徐明, 等. 苏桥深潜山枯竭油气藏储气库固井技术[J]. 钻井液与完井液,2014,31(1):64-67,100.ZHONG Fuhai, LIU Shuoqiong, XU Ming, et al. Research and application on gas storage facility cementing technology of deep buried hill deplete zones in Suqiao[J]. Drilling Fluid & Completion Fluid, 2014, 31(1):64-67,100. [3] 钟福海, 钟德华. 苏桥深潜山储气库固井难点及对策[J]. 石油钻采工艺,2012,34(5):118-121.ZHONG Fuhai, ZHONG Dehua. Cementing difficulties and countermeasures of deep buried gas storage in Suqiao area[J]. Oil Drilling & Production Technology, 2012, 34(5):118-121. [4] 杜慧星, 王宇, 刘玉林. 针对华北油田苏桥潜山地区固井双凝水泥浆体系性能优选[J]. 当代化工,2018,47(11):2417-2421. doi: 10.3969/j.issn.1671-0460.2018.11.045DU Huixing, WANG Yu, LIU Yulin. Performance optimization of cementing double curing system in Suqiao buried hill area of Huabei oilfield[J]. Contemporary Chemical Industry, 2018, 47(11):2417-2421. doi: 10.3969/j.issn.1671-0460.2018.11.045 [5] 齐静, 王云, 马疆, 等. 弹性膨胀水泥浆在储气库固井中的应用[J]. 钻井液与完井液,2013,30(4):52-55.QI Jing, WANG Yun, MA Jiang, et al. Application of elastic expansion cement slurry in gas storage wells[J]. Drilling Fluid & Completion Fluid, 2013, 30(4):52-55. [6] 贾聚全. 吉林油田枯竭型气藏储气库固井技术[J]. 科技与创新,2024(2):88-90.JIA Juquan. Cementing technology of depleted gas reservoir in Jilin oilfield[J]. Science and Technology & Innovation, 2024(2):88-90. [7] 刘自茹, 肖尧, 陈旭, 等. 盐穴储能库固井工艺[J]. 钻井液与完井液,2024,41(3):374-382.LIU Ziru, XIAO Yao, CHEN Xu, et al. Well cementing technology for salt cavern energy storage[J]. Drilling Fluid & Completion Fluid, 2024, 41(3):374-382. [8] 闫睿昶, 徐明, 虞海法, 等. 巴彦河套盆地复杂储层固井技术[J]. 钻井液与完井液,2023,40(1):82-88.YAN Ruichang, XU Ming, YU Haifa, et al. Well cementing technology for complex reservoirs in the Bayan hetao basin[J]. Drilling Fluid & Completion Fluid, 2023, 40(1):82-88. [9] 于林, 谭慧静, 任阳, 等. 三高条件对弹韧性水泥浆性能的影响及短期腐蚀机理[J]. 钻井液与完井液,2023,40(2):222-232.YU Lin, TAN Huijing, REN Yang, et al. Study on the influence of elastic toughness cement slurry performance and short-term corrosion mechanism under HPHTHS conditions[J]. Drilling Fluid & Completion Fluid, 2023, 40(2):222-232. [10] 李军, 陈勉, 柳贡慧, 等. 套管、水泥环及井壁围岩组合体的弹塑性分析[J]. 石油学报,2005,26(6):99-103.LI Jun, CHEN Mian, LIU Gonghui, et al. Elastic-plastic analysis of casing-concrete sheath-rock combination[J]. Acta Petrolei Sinica, 2005, 26(6):99-103. [11] 李斐. 抗高温弹韧性水泥浆体系优化研究[J]. 钻井液与完井液,2021,38(5):623-627.LI Fei. Study on optimization of high temperature cement slurry with elasticity and toughness[J]. Drilling Fluid & Completion Fluid, 2021, 38(5):623-627 [12] 罗长斌, 李治, 胡富源, 等. 韧性水泥浆在长庆储气库固井中的研究与应用[J]. 西部探矿工程,2016,28(1):72-76.LUO Changbin, LI Zhi, HU Fuyuan, et al. Research and application of ductile cement slurry in cementing of Changqing gas storage[J]. West-China Exploration Engineering, 2016, 28(1):72-76. [13] 冯瑞阁, 李玮, 孟仁洲, 等. 星探1井韧性防窜水泥浆技术[J]. 钻井液与完井液,2023,40(5):658-664.FENG Ruige, LI Wei, MENG Renzhou, et al. Study and application of a tough Anti-Channeling cement slurry for well Xingtan-1[J]. Drilling Fluid & Completion Fluid, 2023, 40(5):658-664. [14] 李成嵩, 李社坤, 范明涛, 等. 高密度弹韧性水泥浆力学数值模拟[J]. 钻井液与完井液,2023,40(2):233-240.LI Chengsong, LI Shekun, FAN Mingtao, et al. Numerical simulation study on mechanics of high density elastic and tough cement slurries[J]. Drilling Fluid & Completion Fluid, 2023, 40(2):233-240. [15] 王涛, 申峰, 展转盈, 等. 页岩气小井眼水平井纳米增韧水泥浆固井技术[J]. 石油钻探技术,2023,51(3):51-57.WANG Tao, SHEN Feng, ZHAN Zhuaiying, et al. Ductile nano-cement slurry cementing for slim-hole horizontal shale gas wells[J]. Petroleum Drilling Techniques, 2023, 51(3):51-57. [16] 张佳滢, 严俊涛, 周迎春, 等. 深层页岩气井高强度弹韧性水泥石力学性能研究[J]. 钻采工艺,2021,44(4):132-136.ZHANG Jiaying, YAN Juntao, ZHOU Yingchun, et al. Study on mechanical properties of high strength Elastic-Toughness cement for deep shale gas wells[J]. Drilling & Production Technology, 2021, 44(4):132-136. [17] 高元, 杨广国, 陆沛青, 等. 一种大温差弹韧性水泥浆[J]. 钻井液与完井液,2019,36(1):97-101,108.GAO Yuan, YANG Guangguo, LU Peiqing, et al . Study and application of a large temperature difference cement slurry with good elasticity and toughness[J]. Drilling Fluid & Completion Fluid, 2019, 36(1):97-101,108 [18] 田磊聚,朱海金,卢海川,等. 改善固井水泥石力学性能的研究进展 [J]. 钻井液与完井液,2024,41(6):695-708.TIAN Leiju, ZHU Haijin, LU Haichuan, et al. Progress in studying on improving mechanical property of set cement in well cementing[J]. Drilling Fluid & Completion Fluid, 2024, 41(6):695-708 [19] 刘翠微, 安耀彬, 周怡. G级油井水泥物理性能影响因素分析[J]. 钻井液与完井液,2008,25(6):65-69.LIU Cuiwei, AN Yaobin, ZHOU Yi. An analysis of the contributing factors to the physical property of the class G oil well cement[J]. Drilling Fluid & Completion Fluid, 2008, 25(6):65-69. -