High Plugging Capacity Drilling Fluid Technology for Deep Buried Coal-Bed Methane Drilling in Jizhong Area
-
摘要: 冀中地区深部煤岩气水平井钻探面临可借鉴资料少、地质不确定因素多、煤层薄极易出层、煤层极易垮塌和卡钻风险高等诸多难点与挑战。从深入研究深层煤岩储层特性出发,得出煤系地层井壁失稳由力学因素和理化性能因素双重决定,而提高钻井液封堵性和抑制性是解决该问题的技术关键。在复合盐钻井液基础上用微纳米刚性封堵与柔性可变形封堵相结合形成了深部煤岩地层强封堵钻井液体系配方。室内用滚动回收率、砂床封堵和陶瓷滤芯封堵等实验评价结果显示,其抑制性与封堵性优于KCl聚合物和复合盐钻井液。信探1H井现场应用效果也表明,该钻井液体系中封堵类处理剂配伍性好,对钻井液性能无不良影响,能大幅降低API滤失量,能维护井壁稳定。在现场应用过程中,水平段进尺1270 m,煤层段浸泡23 d未发生井壁失稳现象,振动筛返出岩屑规整正常,仅见少量煤岩掉块,未见泥岩掉块,起下钻过程通畅无阻,无事故与复杂发生,解决了深层煤岩气水平井钻探过程井壁失稳难题,保障了钻井作业顺利进行,该技术的应用有助于深层煤岩气钻探领域实现高效规模开发与突破。Abstract: Horizontal drilling of deep buried coal-bed methane in Jizhong area has been faced with several difficulties and challenges such as quite limited data for reference, many geologic uncertainties, thin coal-bed layers which are easy to collapse and have difficulties in trajectory control, as well as high risks of pipe sticking etc. Extensive studies on the characteristics of the deep buried coal-bed reservoirs have concluded that the stability of the borehole wall in the coal-bed formations is controlled both by mechanical factors and physio-chemical factors, the key points of technology in solving this problem is to improve the plugging capacity and inhibitive capacity of the drilling fluid. A drilling fluid with high plugging capacity was formulated to drill the coal-bed formations by treating a compounded salt drilling fluid with rigid micro- and nano-plugging agents and deformable plugging agents. Laboratory experiments on the drilling fluid with hot rolling test, sand-bed plugging test and ceramic filter plugging test show that this drilling fluid has inhibitive capacity and plugging capacity better than those of KCl polymer drilling fluids and compounded salt drilling fluids. This drilling fluid has been used in drilling the well Xintan-1H and proved that the plugging agents have good compatibility with other additives and no negative effect on the properties of the drilling fluid. The addition of the plugging agent into the drilling fluid greatly reduced the API filtration rate and effectively maintained the borehole wall stability. In drilling the 1,270 m long horizontal section, the coal-bed formation, after being soaked by the drilling fluid for 23 days, showed no tendency of borehole wall collapse. Cuttings out of hole have regular shapes and sizes, and from the shale shakers only mudstone sloughing was observed. Tripping into the hole and out of hole were both smoothly conducted. The use of this new drilling fluid has effectively solved the borehole wall destabilization problem encountered in deep horizontal coal-bed methane drilling and ensured the success of drilling. The application of this technology will help achieve efficient and large-scale development and breakthrough in deep buried coal-bed methane drilling and exploration.
-
表 1 煤岩抗压强度实验结果
岩性 编号 深度/
m直径/
mm长度/
mmρ/
g·cm−3测试
类型围压/
MPa抗压强度/
MPa弹性模量/
GPa泊松比 碳质泥岩 bz-1 2547.05 25.82 49.8 2.04 三轴实验 10 14.7437 3.21 0.288 煤岩 bz-2 2548.62 25.58 49.36 1.31 单轴实验 0 19.4568 3.31 0.279 粉砂质泥岩 bz-3 2549.11 25.36 49.68 2.48 三轴实验 20 72.4596 19.21 0.195 深灰色泥岩 bz-4 2551.37 25.60 48.82 2.49 单轴实验 0 85.3632 28.49 0.221 灰色粉砂质泥岩 bz-5 2545.60 25.34 48.54 2.60 三轴实验 20 142.1810 25.26 0.212 灰色粉砂质泥岩 bz-6 2545.69 25.30 49.66 2.60 单轴实验 0 96.1729 16.38 0.213 表 2 XT1井太原组岩屑黏土矿物及全岩矿物含量
岩性 黏土矿物相对含量/% 全岩定量分析/% K C I S I/S S C/S S 黏土总量 石英 钾长石 斜长石 方解石 白云石 菱铁矿 赤铁矿 煤岩 88 12 75 97 3 棕红色泥岩 52 16 32 45 61 33 2 4 棕灰色泥岩 55 12 33 45 41 48 1 10 棕绿色泥岩 52 12 36 50 59 38 3 灰色泥岩 66 9 25 45 64 34 2 深灰色泥岩 92 2 6 40 86 14 注:K:高岭石 ,C:绿泥石, I:伊利石, S:蒙皂石, I/S:伊/蒙混层, C/S:绿/蒙间层,S:间层比。 表 3 XT1井太原组岩屑的线性膨胀量
岩性 井深/m 测试介质 膨胀量/mm 防膨率/% 评价土 清水 14.67 评价土 KCl-聚合物钻井液滤液 10.09 458 泥岩 2531 清水 1.99 泥岩 2531 KCl-聚合物钻井液滤液 1.78 21 煤岩 2532 清水 1.04 煤岩 2532 KCl-聚合物钻井液滤液 0.44 60 表 4 钻井液性能优化实验结果
钻井液配方 实验条件 AV/
mPa·sPV/
mPa·sYP/
PaGel/
Pa/PaFLAPI/
mLFLHTHP/
mL现场KCl聚合物井浆 常温 53.0 34 19.0 5.5/14.0 5.4 12.6 复合盐钻井液 常温 78.0 65 13.0 2.0/9.5 3.8 93℃、16 h 76.0 51 15.0 2.5/7.0 3.6 10.8 1#+2%YX(600目) 常温 82.0 66 16.0 2.0/9.5 3.5 93℃、16 h 84.0 66 18.0 2.0/11.5 3.2 1#+2%BH-HTF 常温 81.5 61 20.5 2.0/9.5 3.4 93℃、16 h 100.0 68 32.0 4.5/12.5 3.2 1#+2%BH-NFT 常温 70.0 58 12.0 1.0/7.0 3.2 93℃、16 h 84.0 61 23.0 2.0/9.5 2.6 1#+2%FT3000 常温 90.5 69 21.5 2.0/8.0 2.8 93℃、16 h 103.0 75 28.0 2.0/11.5 2.5 1#+2%YX(600目)+2%BH-HTF+2%BH-NFT+2%FT3000 常温 90.0 68 22.0 2.0/9.0 2.0 93℃、16 h 104.5 81 23.5 2.0/8.5 1.8 7.2 注:KCl聚合物井浆:(3%~4%)膨润土浆+0.5%NaOH+(0.3%~0.5%)大分子IND30/PAC-HV/CMC-HV/FA367 +(1%~2%)redul+(5%~7%)KCl +1%润滑封堵剂DRF+重晶石;复合盐钻井液(1#):KCl聚合物井浆+0.5%白沥青NFA-25+0.5%PGCS-1+15%weigh2 表 5 钻井液砂床封堵性评价实验
配方 砂床粒
径/目砂床
高度/cm压力/
MPat侵入/
min侵入
深度/cmKCl聚合物井浆 20~40 30 0.7 25 >30 强封堵钻井液 20~40 30 0.7 480 2.8 注:采用93℃老化16 h后的钻井液。 表 6 不同钻井液陶瓷滤芯封堵性评价实验
钻井液 不同时间下的FL/mL 5 min 10 min 20 min 30 min 45 min KCl聚合物井浆 2.0 2.8 3.4 4.6 5.4 强封堵钻井液 0 0.2 0.2 1.0 1.6 表 7 钻井液体系对岩石抗压强度影响评价实验
泥岩 编号 体系 抗压强度/
MPa抗压强度
降低率/%深灰色 bz-7 浸泡前 96.12 0 深灰色 bz-8 蒸馏水 47.72 50.35 深灰色 bz-9 KCl聚合物钻井液 75.92 21.01 灰色粉砂质 bz-10 复合盐钻井液 80.59 16.16 灰色粉砂质 bz-11 强封堵钻井液 89.36 7.03 -
[1] 叶建平, 侯淞译, 张守仁. “十三五”期间我国煤层气勘探开发进展及下一步勘探方向[J]. 煤田地质与勘探,2022,50(3):15-22. doi: 10.12363/issn.1001-1986.21.12.0738YE Jianping, HOU Songyi, ZHANG Shouren. Progress of coalbed methane exploration and development in China during the 13th Five-Year Plan period and the next exploration direction[J]. Coal Geology & Exploration, 2022, 50(3):15-22. doi: 10.12363/issn.1001-1986.21.12.0738 [2] 杨秀春, 徐凤银, 王虹雅, 等. 鄂尔多斯盆地东缘煤层气勘探开发历程与启示[J]. 煤田地质与勘探,2022,50(3):30-41. doi: 10.12363/issn.1001-1986.21.12.0823YANG Xiuchun, XU Fengyin, WANG Hongya, et al. Exploration and development process of coalbed methane in eastern margin of Ordos Basin and its Enlightenment[J]. Coal Geology & Exploration, 2022, 50(3):30-41. doi: 10.12363/issn.1001-1986.21.12.0823 [3] 李曙光, 王成旺, 王红娜, 等. 大宁–吉县区块深层煤层气成藏特征及有利区评价[J]. 煤田地质与勘探,2022,50(9):59-67. doi: 10.12363/issn.1001-1986.21.12.0842LI Shuguang, WANG Chengwang, WANG Hongna, et al. Reservoir forming characteristics and favorable area evaluation of deep coalbed methane in Daning-Jixian Block[J]. Coal Geology & Exploration, 2022, 50(9):59-67. doi: 10.12363/issn.1001-1986.21.12.0842 [4] 聂志宏, 时小松, 孙伟, 等. 大宁−吉县区块深层煤层气生产特征与开发技术对策[J]. 煤田地质与勘探,2022,50(3):193-200. doi: 10.12363/issn.1001-1986.21.12.0818NIE Zhihong, SHI Xiaosong, SUN Wei, et al. Production characteristics of deep coalbed methane gas reservoirs in Daning-Jixian Block and its development technology countermeasures[J]. Coal Geology & Exploration, 2022, 50(3):193-200. doi: 10.12363/issn.1001-1986.21.12.0818 [5] 杨秀春, 宋柏荣, 陈国辉, 等. 大宁-吉县区块深层煤岩多尺度孔缝结构特征[J]. 特种油气藏,2022,29(5):94-100. doi: 10.3969/j.issn.1006-6535.2022.05.013YANG Xiuchun, SONG Bairong, CHEN Guohui, et al. Characteristics of multi-scale pore-fracture structure of deep coal rocks in the Daning-Jixian block[J]. Special Oil & Gas Reservoirs, 2022, 29(5):94-100. doi: 10.3969/j.issn.1006-6535.2022.05.013 [6] 王维, 韩金良, 王玉斌, 等. 大宁-吉县区块深层煤岩气水平井钻井技术[J]. 石油机械,2023,51(11):70-78.WANG Wei, HAN Jinliang, WANG Yubin, et al. Drilling technology for deep coal rock gas horizontal wells in Daning-Jixian block[J]. China Petroleum Machinery, 2023, 51(11):70-78. [7] 赵前进, 杨立军, 李慎越, 等. 柯柯亚深层煤岩气水平井钻井实践[J]. 天然气勘探与开发,2024,47(1):89-96. doi: 10.12055/gaskk.issn.1673-3177.2024.01.011ZHAO Qianjin, YANG Lijun, LI Shenyue, et al. Drilling practices on horizontal wells of deep coal measure gas, Kekeya structure[J]. Natural Gas Exploration and Development, 2024, 47(1):89-96. doi: 10.12055/gaskk.issn.1673-3177.2024.01.011 [8] 张振华, 孙晗森, 乔伟刚. 煤层气储层特征及钻井液选择[J]. 中国煤层气,2011,8(2):24-27. doi: 10.3969/j.issn.1672-3074.2011.02.006ZHANG Zhenhua, SUN Hansen, QIAO Weigang. Characteristics of CBM reservoir and drilling fluid technology[J]. China Coalbed Methane, 2011, 8(2):24-27. doi: 10.3969/j.issn.1672-3074.2011.02.006 [9] 阎荣辉, 王京光, 何旺, 等. 鄂尔多斯盆地深层煤岩气井储层坍塌及伤害主控因素研究[J]. 钻采工艺,2023,46(6):8-13. doi: 10.3969/J.ISSN.1006-768X.2023.06.02YAN Ronghui, WANG Jingguang, HE Wang, et al. Study on the main controlling factors of reservoir collapse and damage in deep coal gas wells in Ordos basin[J]. Drilling & Production Technology, 2023, 46(6):8-13. doi: 10.3969/J.ISSN.1006-768X.2023.06.02 [10] 黄维安, 邱正松, 杨力, 等. 煤层气钻井井壁失稳机理及防塌钻井液技术[J]. 煤田地质与勘探,2013,41(2):37-41.HUANG Weian, QIU Zhengsong, YANG Li, et al. Instability mechanism of sidewall and anti-sloughing drilling fluid technique for coalbed methane well drilling[J]. Coal Geology & Exploration, 2013, 41(2):37-41. [11] 屈平, 申瑞臣. 煤层气钻井井壁稳定机理及钻井液密度窗口的确定[J]. 天然气工业,2010,30(10):64-68. doi: 10.3787/j.issn.10000976.2010.10.016QU Ping, SHEN Ruichen. Mechanism of wellbore stability and determination of drilling fluid density window in coalbed methane drilling[J]. Natural Gas Industry, 2010, 30(10):64-68. doi: 10.3787/j.issn.10000976.2010.10.016 [12] 喻化民, 薛莉, 吴红玲, 等. 满深区块深井强封堵钻井液技术[J]. 钻井液与完井液,2022,39(2):171-179. doi: 10.12358/j.issn.1001-5620.2022.02.007YU Huamin, XUE Li, WU Hongling, et al. Drilling fluid with superior plugging performance used in deep well drilling in Manshen block[J]. Drilling Fluid & Completion Fluid, 2022, 39(2):171-179. doi: 10.12358/j.issn.1001-5620.2022.02.007 [13] 黄维安, 邱正松, 王彦祺, 等. 煤层气储层损害机理与保护钻井液的研究[J]. 煤炭学报,2012,37(10):1717-1721.HUANG Weian, QIU Zhengsong, WANG Yanqi, et al. Study on damage mechanism and protection drilling fluid for coalbed methane[J]. Journal of China Coal Society, 2012, 37(10):1717-1721. [14] 蒋官澄, 毛蕴才, 周宝义, 等. 暂堵型保护油气层钻井液技术研究进展与发展趋势[J]. 钻井液与完井液,2018,35(2):1-16. doi: 10.3969/j.issn.1001-5620.2018.02.001JIANG Guancheng, MAO Yuncai, ZHOU Baoyi, et al. Progress made and trend of development in studying on temporarily type plugging reservoir protection drilling fluids[J]. Drilling Fluid & Completion Fluid, 2018, 35(2):1-16. doi: 10.3969/j.issn.1001-5620.2018.02.001 -