留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于润湿性原位表征和亚临界水特性的高温储层水锁损害机理

单锴 邱正松 程征 杨梦涛 李楷 钟汉毅 任晓霞

单锴,邱正松,程征,等. 基于润湿性原位表征和亚临界水特性的高温储层水锁损害机理[J]. 钻井液与完井液,2025,42(2):187-194 doi: 10.12358/j.issn.1001-5620.2025.02.005
引用本文: 单锴,邱正松,程征,等. 基于润湿性原位表征和亚临界水特性的高温储层水锁损害机理[J]. 钻井液与完井液,2025,42(2):187-194 doi: 10.12358/j.issn.1001-5620.2025.02.005
SHAN Kai, QIU Zhengsong, CHENG Zheng, et al.Mechanisms of water block damage of high temperature reservoirs based on in-situ characterization of wettability and subcritical water characteristics[J]. Drilling Fluid & Completion Fluid,2025, 42(2):187-194 doi: 10.12358/j.issn.1001-5620.2025.02.005
Citation: SHAN Kai, QIU Zhengsong, CHENG Zheng, et al.Mechanisms of water block damage of high temperature reservoirs based on in-situ characterization of wettability and subcritical water characteristics[J]. Drilling Fluid & Completion Fluid,2025, 42(2):187-194 doi: 10.12358/j.issn.1001-5620.2025.02.005

基于润湿性原位表征和亚临界水特性的高温储层水锁损害机理

doi: 10.12358/j.issn.1001-5620.2025.02.005
基金项目: 国家自然科学基金项目“基于亚临界水热反应的超高温水基钻井液滤失造壁性调控方法”(52174013);“低渗透油藏压驱渗吸驱油机理与标度模型研究”(52104026)。
详细信息
    作者简介:

    单锴,在读博士研究生,1995年,现在主要从事钻井液与储层保护技术研究。电话17854222883;E-mail:17854222883@163.com

    通讯作者:

    邱正松,中国石油大学(华东)教授,博士生导师,博士,E-mail:giuzs63@sina.com

  • 中图分类号: TE254.4

Mechanisms of Water Block Damage of High Temperature Reservoirs Based on In-situ Characterization of Wettability and Subcritical Water Characteristics

  • 摘要: 研究深部储层岩石原位润湿特性,对深入了解高温储层水锁损害机理及制定高效防水锁技术对策具有重要意义。原位表征了20℃~200℃、8 MPa氮气环境中不同岩样表面接触角随温度的变化,并借助原子力显微镜、扫描电子显微镜和能谱分析探讨了吸附原油岩石表面接触角随温度变化的机理。实验结果表明,洗油后储层岩样表面接触角随温度升高逐渐降低,且呈明显分段现象,20℃~100℃下接触角变化率约为−0.04°/℃,100℃~200℃时,变化率约为−0.24°/℃,水在其表面拟黏附功随温度升高变化较小。水在吸附原油岩样表面接触角随温度升高逐渐减小,160℃时降低为75.7 °。岩石表面由亲油转变为亲水,拟黏附功大幅增加,160℃时变化率为155.27 %。亚临界水作用下岩石表面烃类物质的解吸甚至热裂解,导致了吸附原油岩石表面润湿性的显著变化,入井流体接触吸附有烃类物质的储层岩石后可能会大幅增加储层水锁损害程度。该研究对高温储层岩石表面润湿性变化机制提供了一些新的认识,有助于高温油气资源开采过程中制定合适的防水锁方案。

     

  • 图  1  水在洗油后和吸附原油岩样表面的接触角

    图  2  高温高压接触角测试系统示意图

    图  3  不同温度下岩心渗透率随含水饱和度的变化

    图  4  水在洗油后储层岩心表面接触角随温度变化

    图  5  无量纲接触角随无量纲温度变化曲线

    图  6  水在洗油后储层岩样的表面接触角测量值与预测值

    图  7  水-氮气界面张力随温度变化曲线

    图  8  水在洗油后储层岩样表面拟黏附功随温度变化曲线

    图  9  水在吸附原油岩样表面接触角随温度变化

    图  10  水在吸附原油岩样表面拟黏附功随温度变化

    图  11  不同岩石样品表面二维和三维微观形貌图

    图  12  不同岩石样品SEM图像和EDS能谱分析

  • [1] 孙金声, 王韧, 龙一夫. 我国钻井液技术难题、新进展及发展建议[J]. 钻井液与完井液,2024,41(1):1-30.

    SUN Jinsheng, WANG Ren, LONG Yifu. Challenges, developments, and suggestions for drilling fluid technology in China[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):1-30.
    [2] 孙金声, 许成元, 康毅力, 等. 致密/页岩油气储层损害机理与保护技术研究进展及发展建议[J]. 石油钻探技术,2020,48(4):1-10.

    SUN Jinsheng, XU Chengyuan, KANG Yili, et al. Research progress and development recommendations covering damage mechanisms and protection technologies for tight/shale oil and gas reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(4):1-10.
    [3] 付建民, 何瑞兵, 谭伟雄, 等. 太古界潜山花岗片麻岩储层温度敏感性实验研究[J]. 油气地质与采收率,2023,30(3):42-48.

    FU Jianmin, HE Ruibing, TAN Weixiong, et al. Experimental study on temperature sensitivity of granite gneiss reservoirs in Archean buried hills[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(3):42-48.
    [4] 董兵强, 邱正松, 陆朝晖, 等. 临兴区块致密砂岩气储层损害机理及钻井液优化[J]. 钻井液与完井液,2018,35(6):65-70.

    DONG Bingqiang, QIU Zhengsong, LU Chaohui, et al. Damage mechanisms determination for tight sands gas reservoir in block Linxing and drill-in fluid optimization for protection of the reservoir[J]. Drilling Fluid & Completion Fluid, 2018, 35(6):65-70.
    [5] 黄维安, 雷明, 滕学清, 等. 致密砂岩气藏损害机理及低损害钻井液优化[J]. 钻井液与完井液,2018,35(4):33-38.

    HUANG Weian, LEI Ming, TENG Xueqing, et al. Damaging mechanism of tight sandstone gas reservoirs and optimization of drilling fluids for reservoir protection[J]. Drilling Fluid & Completion Fluid, 2018, 35(4):33-38.
    [6] PETKE F D, RAY B R. Temperature dependence of contact angles of liquids on polymeric solids[J]. Journal of Colloid and Interface Science, 1969, 31(2):216-227. doi: 10.1016/0021-9797(69)90329-4
    [7] HAYASHI T, HAZUKU T, TAKAMASA T. Surface wettability of water droplets in high-temperature, high-pressure environment[C]//The 13th international conference on nuclear engineering abstracts. Beijing, 2005: 604.
    [8] 宋嘉文. 高温高压环境下水在固体表面接触角的温度和压力依赖性研究[D]. 杭州: 浙江大学, 2022.

    SONG Jiawen. On the temperature and pressure dependence of the contact angles of water on solid surfaces at elevated temperatures and pressures[D]. Hangzhou: Zhejiang University, 2022.
    [9] KIM T W, KOVSCEK A R. Wettability alteration of a heavy oil/brine/carbonate system with temperature[J]. Energy & Fuels, 2013, 27(6):2984-2998.
    [10] ZHANG Y C, ZENG J H, QIAO J C, et al. Investigating the effect of the temperature and pressure on wettability in crude oil–brine–rock systems[J]. Energy & Fuels, 2018, 32(9):9010-9019.
    [11] DUFFY T, LI J X, JOHNS R T, et al. Capillary contact angle for the quartz-distilled water-normal decan interface at temperatures up to 200 ℃[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2021, 609:125608.
    [12] 王荣春, 卢卫红, 马莺. 亚临界水的特性及其技术应用[J]. 食品工业科技,2013,34(8):373-377.

    WANG Rongchun, LU Weihong, MA Ying. Subcritical water properties and its technical applications[J]. Science and Technology of Food Industry, 2013, 34(8):373-377.
    [13] 杨天华, 佟瑶, 李秉硕, 等. SDS联合亚临界水预处理对污泥水热液化制油的影响[J]. 太阳能学报,2021,42(5):477-482.

    YANG Tianhua, TONG Yao, LI Bingshuo, et al. Combined (SDS+subcritical water) pretreatment effect on hydro-liquefaction of municipal sludge[J]. Acta Energiae Solaris Sinica, 2021, 42(5):477-482.
    [14] MAO H, YANG Y, ZHANG H, et al. A critical review of the possible effects of physical and chemical properties of subcritical water on the performance of water-based drilling fluids designed for ultra-high temperature and ultra-high pressure drilling applications[J]. Journal of Petroleum Science and Engineering, 2020, 187:106795. doi: 10.1016/j.petrol.2019.106795
    [15] HIROSE Y, HAYASHI T, HAZUKU T, et al. Experimental study on contact angle of water droplet in high-temperature condition[C]//14th International Conference on Nuclear Engineering. Florida, 2006: 709-716.
  • 加载中
图(12)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  15
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-13
  • 修回日期:  2024-11-05
  • 刊出日期:  2025-04-17

目录

    /

    返回文章
    返回