[1] |
孙金声, 王韧, 龙一夫. 我国钻井液技术难题、新进展及发展建议[J]. 钻井液与完井液,2024,41(1):1-30.SUN Jinsheng, WANG Ren, LONG Yifu. Challenges, developments, and suggestions for drilling fluid technology in China[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):1-30.
|
[2] |
孙金声, 许成元, 康毅力, 等. 致密/页岩油气储层损害机理与保护技术研究进展及发展建议[J]. 石油钻探技术,2020,48(4):1-10.SUN Jinsheng, XU Chengyuan, KANG Yili, et al. Research progress and development recommendations covering damage mechanisms and protection technologies for tight/shale oil and gas reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(4):1-10.
|
[3] |
付建民, 何瑞兵, 谭伟雄, 等. 太古界潜山花岗片麻岩储层温度敏感性实验研究[J]. 油气地质与采收率,2023,30(3):42-48.FU Jianmin, HE Ruibing, TAN Weixiong, et al. Experimental study on temperature sensitivity of granite gneiss reservoirs in Archean buried hills[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(3):42-48.
|
[4] |
董兵强, 邱正松, 陆朝晖, 等. 临兴区块致密砂岩气储层损害机理及钻井液优化[J]. 钻井液与完井液,2018,35(6):65-70.DONG Bingqiang, QIU Zhengsong, LU Chaohui, et al. Damage mechanisms determination for tight sands gas reservoir in block Linxing and drill-in fluid optimization for protection of the reservoir[J]. Drilling Fluid & Completion Fluid, 2018, 35(6):65-70.
|
[5] |
黄维安, 雷明, 滕学清, 等. 致密砂岩气藏损害机理及低损害钻井液优化[J]. 钻井液与完井液,2018,35(4):33-38.HUANG Weian, LEI Ming, TENG Xueqing, et al. Damaging mechanism of tight sandstone gas reservoirs and optimization of drilling fluids for reservoir protection[J]. Drilling Fluid & Completion Fluid, 2018, 35(4):33-38.
|
[6] |
PETKE F D, RAY B R. Temperature dependence of contact angles of liquids on polymeric solids[J]. Journal of Colloid and Interface Science, 1969, 31(2):216-227. doi: 10.1016/0021-9797(69)90329-4
|
[7] |
HAYASHI T, HAZUKU T, TAKAMASA T. Surface wettability of water droplets in high-temperature, high-pressure environment[C]//The 13th international conference on nuclear engineering abstracts. Beijing, 2005: 604.
|
[8] |
宋嘉文. 高温高压环境下水在固体表面接触角的温度和压力依赖性研究[D]. 杭州: 浙江大学, 2022.SONG Jiawen. On the temperature and pressure dependence of the contact angles of water on solid surfaces at elevated temperatures and pressures[D]. Hangzhou: Zhejiang University, 2022.
|
[9] |
KIM T W, KOVSCEK A R. Wettability alteration of a heavy oil/brine/carbonate system with temperature[J]. Energy & Fuels, 2013, 27(6):2984-2998.
|
[10] |
ZHANG Y C, ZENG J H, QIAO J C, et al. Investigating the effect of the temperature and pressure on wettability in crude oil–brine–rock systems[J]. Energy & Fuels, 2018, 32(9):9010-9019.
|
[11] |
DUFFY T, LI J X, JOHNS R T, et al. Capillary contact angle for the quartz-distilled water-normal decan interface at temperatures up to 200 ℃[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2021, 609:125608.
|
[12] |
王荣春, 卢卫红, 马莺. 亚临界水的特性及其技术应用[J]. 食品工业科技,2013,34(8):373-377.WANG Rongchun, LU Weihong, MA Ying. Subcritical water properties and its technical applications[J]. Science and Technology of Food Industry, 2013, 34(8):373-377.
|
[13] |
杨天华, 佟瑶, 李秉硕, 等. SDS联合亚临界水预处理对污泥水热液化制油的影响[J]. 太阳能学报,2021,42(5):477-482.YANG Tianhua, TONG Yao, LI Bingshuo, et al. Combined (SDS+subcritical water) pretreatment effect on hydro-liquefaction of municipal sludge[J]. Acta Energiae Solaris Sinica, 2021, 42(5):477-482.
|
[14] |
MAO H, YANG Y, ZHANG H, et al. A critical review of the possible effects of physical and chemical properties of subcritical water on the performance of water-based drilling fluids designed for ultra-high temperature and ultra-high pressure drilling applications[J]. Journal of Petroleum Science and Engineering, 2020, 187:106795. doi: 10.1016/j.petrol.2019.106795
|
[15] |
HIROSE Y, HAYASHI T, HAZUKU T, et al. Experimental study on contact angle of water droplet in high-temperature condition[C]//14th International Conference on Nuclear Engineering. Florida, 2006: 709-716.
|