Drilling Fluid Technology for the Deepest Vertical Well in Asia – The Ultra-Deep Well Pengshen-6
-
摘要: 蓬深6井是中石油西南油气田分公司部署的重点预探井。完钻井深9026 m,目的层位主探震旦系灯影组储层。该井六开完钻,其钻井液技术难点主要包括:①上部井段存在大段泥岩,地层水敏性强;②同一裸眼段多压力系统共存;③上部超大尺寸井眼,钻井液上返速度低,井眼清洁困难;④大段盐膏层污染钻井液;⑤多压力系统并存导致的井漏复杂;⑥二叠系以下井段酸性气体污染严重、超高密度下钻井液流变性控制困难;⑦超深井段,超高温超高压(216℃、150 MPa)下,油基钻井液流变性、沉降稳定性控制难;⑧震旦系灯影组地层破碎等难题。针对以上难点,通过大量室内实验,优选出3套钻井液体系:上部地层采用有机盐聚合物钻井液体系优化钻井液的包被抑制性、中部地层采用有机盐聚磺钻井液体系优化钻井液的抗高温、抗污染特性、目的层采用抗超高温油基钻井液体系优化钻井液的沉降稳定性、流变性以及携砂特性。在该井现场应用时,表现出上部地层钻井液流变性受控,井壁稳定;高密度水基钻井液流变性好、抑制封堵能力强、抗盐/钙/CO2酸气污染能力强;超高温超高压下低密度油基钻井液流变性受控、沉降稳定性好、防塌能力强的特点。Abstract: Well Pengshen-6, a six-interval well with a total depth of 9,026 m, is a key exploration well deployed by the PetroChina Southwest Oil & Gasfield Company. The projected reservoir is mainly the Dengying Formation in the Sinian System. The main technical difficulties of the drilling fluid operation include: 1) a thick mudstone with strong water sensitivity in the upper part of the well, 2) coexistence of multiple pressure systems in the same open hole section, 3) poor hole cleaning in the upper extra-large hole because of low annular flow velocity, 4) drilling fluid contamination by long section of salt/gypsum formation, 5) lost circulation resulted from the coexistence of multiple pressure systems, 6) serious acid gas contamination in the well section below the Permian System and difficulties in controlling the rheology of the ultra-high density drilling fluids, 7) difficulties in controlling the rheology and sedimentation stability of the oil-based drilling fluid under ultra-high temperature ultra-high pressure (the bottom hole temperature reaches 216℃ and the bottom hole pressure reaches 150 MPa) in the ultra-deep well section, 8) the broken Dengying Formation in the Sinian System. To deal with these difficulties, three sets of drilling fluid formulations were selected through many laboratory experiments: an organic salt polymer drilling fluid with good encapsulating and inhibitive properties was used to drill the upper section of the well, an organic salt polymer-sulfonate drilling fluid with good high temperature and contamination resisting performances was used to drill the middle section of the well, and an ultra-high temperature-resistant oil-based drilling fluid with good sedimentation stability, rheological properties and cuttings-carrying capacity was used to drill the target zones. In field application of these drilling fluids, the rheology of the drilling fluid in the upper section was under control, and the wellbore was stable; the high-density water-based drilling fluid had good rheology, strong inhibitive and plugging capacities, and strong resistance to salt/calcium/CO2 contamination; the low-density oil-based drilling fluid under ultra-high temperature and ultra-high pressure had controlled rheology, good sedimentation stability and strong anti-collapse capabilities.
-
表 1 蓬深6井井身结构
开钻
次序井深/
m钻头尺寸/
mm套管尺寸/
mm套管
程序套管下入
地层层位一开 70 914.4 720.00 导管 蓬莱镇组 二开 700 660.4 508.00 表层套管 遂宁组 三开 2910 455.0 374.65 技术套管 须家河组顶 四开 6418 333.4 282.58 技术回接 茅口组顶 282.58 技术回接 282.58 技术悬挂 五开 7780 241.3 196.85 油层回接 灯四段顶 196.85 油层悬挂 六开 9026 149.2 127.00 尾管悬挂 灯二段 表 2 蓬深6井部分层位的岩屑清水回收率
取样井深/m 层位 岩性 清水回收率/% 520 蓬莱镇 泥岩 7.03 890 遂宁组 泥岩 8.22 2400 自流井组 泥质砂岩 14.62 6300 龙潭组 泥质灰岩 22.15 表 3 蓬深6井部分地层的地层压力系数和钻井液密度
层位 垂直井段/
m地层压力
系数ρ/
g/cm3蓬莱镇组 0~70 1.00 1.05~1.10 蓬莱镇组~遂宁组 70~700 1.00 1.07~1.40 遂宁组~沙二段底 700~1710 1.00/1.10 1.07~1.60 沙二段底~凉高山组底 1710~2523 1.50 1.57~1.80 凉高山组底~须家河组顶 2523~2890 1.60 1.67~1.90 表 4 雷口坡组、嘉陵江组岩性、厚度
地层 岩性 厚度/m 雷口坡组 雷四 白云岩 143 雷三 白云岩、岩盐 230 雷二~雷一 泥质白云岩与石膏互层 425 嘉陵江组 嘉五~嘉四 膏岩与云岩互层 399 嘉三 云岩 120 嘉二 膏岩夹云岩 240 嘉一 灰岩、云岩 115 表 5 部分地层的地层压力系数和钻井液密度设计
层位 垂直井段/
m地层压力
系数ρ/
g/cm3茅口组~梁山组 6385~6753 2.29 2.29~2.44 五峰组~龙王庙组 6753~7087 1.92 沧浪铺组 7087~7279 2.20 筇竹寺组 7279~7748 2.00 表 6 有机盐聚磺钻井液抗温性评价
T老化/℃ φ600 φ300 Gel/(Pa/Pa) FLAPI/mL FLHTHP/mL pH 120 74 45 2/10 2.8 5.0 10 140 71 47 2/15 2.4 8.6 10 160 77 51 3/18 2.4 15.0 10 注:在对应老化温度下老化16 h后在50℃测定性能。 表 7 油基钻井液流变性评价
井浆 φ600 φ300 Gel/
Pa/PaFLAPI/
mLFLHTHP/
mLES/
V热滚前 73 41 3/5 1.2 3.6 672 热滚后 71 47 2/12 1.0 3.8 651 注:在220℃下老化16 h后在50℃测定性能。 表 8 蓬深6井水基钻井液受酸气污染后的性能变化
井深/
mFV/
sPV/
mPa·sYP/
PaGel/
Pa/Pa4890 45 28 13 4/15 4900 46 29 13 4/15 4910 65 52 21 5/22 4920 72 55 25 5/25 4930 78 58 29 6/28 表 9 油基钻井液流变性评价
配方 ρ/(g/cm3) Gel/(Pa/Pa) PV/mPa·s YP/Pa ES/V FLHTHP/mL 1# 1.44 2/12 42 5.0 610 10.6 2# 1.45 3/8 44 4.5 652 4.6 注:在220℃老化温度下老化16 h后在50℃测定性能。 -
[1] 肖钦仁, 袁海锋, 叶子旭, 等. 川中北部地区八角场构造二叠系茅口组白云岩储层成因机制[J]. 天然气地球科学,2023,34(7):1218-1236.XIAO Qinren, YUAN Haifeng, YE Zixu, et al. Genetic mechanism of dolomite reservoir in Permian Maokou Formation in Bajiaochang structure in North Central Sichuan[J]. Natural Gas Bioscience, 2023, 34(7):1218-1236. [2] 杨晋东, 于振锋, 宋新亚, 等. 川中安岳气田震旦-寒武系天然气地球化学特征及气源分析[J]. 能源技术与管理,2023,48(1):141-144,196.YANG Jindong, YU Zhenfeng, SONG Xinya, et al. Chuanzhong anyue gas field Zhendan-Cambrian department of natural gas geochemistry and analysis of gas source[J]. Energy Technology and Management, 2023, 48(1):141-144,196. [3] 李欣忆. 深9026米“地下珠峰”这样钻出[N]. 四川日报. 2023-02-16(05).LI Xinyi. Deep 9026 meters "underground Everest" drill out like this[N]. Sichuan Daily, 2023-02-16(05). [4] 屈海洲, 邹兵, 张连进, 等. 川中北部地区寒武系第二统沧浪铺组一段孔隙特征、成因及演化模式[J]. 沉积学报,2024,42(5):1723-1737.QU Haizhou, ZOU Bing, ZHANG Lianjin, et al. Pore characteristics, Genesis, and evolution model of the first member of the canglangpu formation from the cambrian series 2 in the central and northern Sichuan basin[J]. Acta Sedimentologica Sinica, 2024, 42(5):1723-1737. [5] 王东, 刘宏, 唐松, 等. 川中二叠系长兴组层序格架内台内滩沉积构型与分布规律[J]. 石油勘探与开发,2023,50(2):346-359. doi: 10.1016/S1876-3804(23)60392-1WANG Dong, LIU Hong, TANG Song, et al. Sedimentary architecture and distribution of intra-platform shoal in sequence framework of Permian Changxing Formation in central Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2023, 50(2):346-359. doi: 10.1016/S1876-3804(23)60392-1 [6] 陈县伟. 深井超深井钻井技术现状和发展趋势[J]. 化学工程与装备,2023(1):211-216.CHEN Xianwei. The current situation and development trend of the deep well drilling of the deep well in the deep well[J]. Chemical engineering and equipment, 2023(1):211-216. [7] 范俊佳, 姜华, 鲁雪松, 等. 四川盆地蓬莱地区震旦系灯影组气藏压力演化与成藏过程[J]. 天然气工业,2022,42(12):32-43.FAN Junjia, JIANG Hua, LU Xuesong, et al. Pressure evolution and hydrocarbon accumulation process of Sinian Dengying Formation gas reservoirs in the Penglai area, Sichuan Basin[J]. Natural Gas Industry, 2022, 42(12):32-43. [8] 邓虎, 贾利春. 四川盆地深井超深井钻井关键技术与展望[J]. 天然气工业,2022,42(12):82-94.DENG Hu, JIA Lichun. Key technologies for drilling deep and ultra-deep wells in the Sichuan Basin: current status, challenges and prospects[J]. Natural Gas Industry, 2022, 42(12):82-94. [9] 程凯, 许桂莉, 钱帆, 等. 川渝地区超深井强封堵高润滑水基钻井液体系研究[J]. 西部探矿工程,2022,34(12):41-45.CHENG Kai, XU Guili, QIAN Fan, et al. Sichuan-Chongqing area ultra-deep wells blocking high lubricating water-based drilling liquid system research[J]. West-China Exploration Engineering, 2022, 34(12):41-45. [10] 胡超, 丁伟, 胡军, 等. 自动垂直钻井工具在蓬莱气区推广应用[J]. 钻采工艺,2022,45(6):152-156.HU Chao, DING Wei, HU Jun, et al. Automatic vertical drilling tools promoted in Penglai gas area[J]. Drilling & Production Technology, 2022, 45(6):152-156. [11] 杨雨, 文龙, 宋泽章, 等. 川中古隆起北部蓬莱气区多层系天然气勘探突破与潜力[J]. 石油学报,2022,43(10):1351-1368,1394.YANG Yu, WEN Long, SONG Zezhang, et al. Series of natural gas exploration breakthrough and potential[J]. Acta Petrolei Sinica, 2022, 43(10):1351-1368,1394. [12] 何立成, 唐波. 准噶尔盆地超深井钻井技术现状与发展建议[J]. 石油钻探技术,2022,50(5):1-8. doi: 10.11911/syztjs.2022092HE Licheng, TANG Bo. The up to date technologies of Ultra-Deep well drilling in Junggar basin and suggestions for further improvements[J]. Petroleum Drilling Techniques, 2022, 50(5):1-8. doi: 10.11911/syztjs.2022092 [13] 刘仕, 焦冬有. 超深井抗高温水基钻井液体系研究[J]. 石化技术,2021,28(11):79-80. doi: 10.3969/j.issn.1006-0235.2021.11.036LIU Shi, JIAO Dongyou. Research on high temperature resistant water-based drilling fluid system for ultra-deep wells[J]. Petrochemical Industry Technology, 2021, 28(11):79-80. doi: 10.3969/j.issn.1006-0235.2021.11.036 [14] 康圆, 孙金声, 吕开河, 等. 一种页岩气疏水强封堵水基钻井液[J]. 钻井液与完井液,2021,38(4):442-448.KANG Yuan, SUN Jinsheng, LYU Kaihe, et al. Research on a water-based drilling fluid for shale gas drainage and strong blocking[J]. Drilling Fluid & Completion Fluid, 2021, 38(4):442-448. [15] 付超胜, 敖天, 余加水, 等. 强封堵防塌剂XZ-OSD在准噶尔盆地南缘山前构造带的现场应用[J]. 钻井液与完井液,2021,38(4):469-473.FU Chaosheng, AO Tian, YU Jiashui, et al. Field application of a plugging borehole wall anti-collapse agent XZ-OSD in the piedmont structural belt on the South margin of Junggar basin[J]. Drilling Fluid & Completion Fluid, 2021, 38(4):469-473. [16] 李文涛. 四川页岩气井碳酸根/碳酸氢根污染问题的处理实践[J]. 钻井液与完井液,2022,39(1):53-58.LI Wentao. Study and treatment on carbonate/bicarbonate pollution in shale gas wells in Sichuan[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):53-58. [17] 陈志阳. 钻井液碳酸根和碳酸氢根污染的处理[J]. 中国石油和化工标准与质量,2016,36(15):124-125.CHEN Zhiyang. The treatment of drilling liquid carbonate and bicarbonate root pollution[J]. China Petroleum and Chemical Standard and Quality, 2016, 36(15):124-125. [18] 冯丽, 雷伏涛, 祝学飞, 等. 碳酸根、碳酸氢根污染的钻井液处理及机理研究[J]. 天然气与石油,2015,33(2):53-55,88.FENG Li, LEI Futao, ZHU Xuefei, et al. Drilling solution treatment and mechanism of drilling fluid pollution of carbonate, carbonate root, bicarbonate root contamination[J]. Natural Gas and Oil, 2015, 33(2):53-55,88. [19] 刘增利. 钻井液二氧化碳气体污染起泡原因分析及处理[J]. 化工管理,2014(33):210-210.LIU Zengli. Analysis and treatment of the cause of bubbles of Carbon dioxide gas pollution of drilling fluid[J]. Chemical Enterprise Management, 2014(33):210-210. [20] 刘佑云. 深井钻井液碳酸根和碳酸氢根污染的处理[J]. 石油与天然气化工,2012,41(1):104-106,118.LIU Youyun. Deep well drilling liquid carbonate and bicarbonate root pollution[J]. Chemical Engineering of Oil and Gas, 2012, 41(1):104-106,118. [21] 王志远, 黄维安, 范宇, 等. 长宁区块强封堵油基钻井液技术研究及应用[J]. 石油钻探技术, 2021, 49(5):31-38.WANG Zhiyuan, HUANG Weian, FAN Yu, et al. Technical research and application of oil base drilling fluid with strong plugging property in Changning block[J]. Petroleum Drilling Techniques, 2021, 49(5):31-38. [22] 胡钱, 李晓阳, 唐润平. 五探1井超深井段钻井液的应用[J]. 化学工程与装备,2021(04):60-62.HU Qian, LI Xiaoyang, TANG Runping. The application of the drilling fluid of the super deep well section of the well-exploring 1 well[J]. Chemical engineering and equipment, 2021(04):60-62. [23] 李宁, 杨海军, 文亮, 等. 库车山前超深井抗高温高密度油基钻井液技术[J]. 世界石油工业,2020,27(5):68-73.LI Ning, YANG Haijun, WEN Liang, et al. High temperature and high density oil-based drilling fluid for ultra-deep wells in Kuqa Piedmont[J]. World Petroleum Industry, 2020, 27(5):68-73. [24] 王敬朋, 李渊, 葛晓波, 等. 准噶尔盆地南缘冲断带——呼探1井超深井钻井方案优化[J]. 新疆石油天然气,2020,16(2):19-23.WANG Jingpeng, LI Yuan, GE Xiaobo, et al. The southern edge of the Junggar Basin Breaking Belt-Exploring 1 well-deep well drilling scheme optimization[J]. Xinjiang Oil & Gas, 2020, 16(2):19-23. [25] 王星媛, 陆灯云, 吴正良. 抗220℃高密度油基钻井液的研究与应用[J]. 钻井液与完井液,2020,37(5):550-554,560.WANG Xingyuan, LU Dengyun, WU Zhengliang. Study and application of a high density oil base drilling fluid with high temperature resistance of 220℃[J]. Drilling Fluid & Completion Fluid, 2020, 37(5):550-554,560. [26] 胡大梁, 欧彪, 张道平, 等. 川深1超深井钻井优化设计[J]. 钻采工艺,2020,43(2):34-37.HU Daliang, OU Biao, ZHANG Daoping, et al. Chuanshen 1 ultra-deep well drilling optimization design[J]. Drilling & Production Technology, 2020, 43(2):34-37. [27] 姜相. 深井钻井液技术难点分析及对策研究[J]. 科学技术创新,2020(3):185-186.JIANG Xiang. Deep well drilling solution technical difficulty analysis and countermeasure research[J]. Scientific and Technological Innovation, 2020(3):185-186. [28] 王兰, 陈俊斌, 刘宇凡. 有机盐钻井液在磨溪11井的应用[J]. 钻采工艺,2014,37(1):102-104.WANG Lan, CHEN Junbin, LIU Yufan. Organic salt drilling fluid in the application of Moxi 11 well[J]. Drilling & Production Technology, 2014, 37(1):102-104. [29] 赵江印, 陈永奇, 刘志广, 等. 务古4井复杂深井钻井液技术[J]. 石油钻采工艺,2012,34(6):36-38. doi: 10.3969/j.issn.1000-7393.2012.06.011ZHAO Jiangyin, CHEN Yongqi, LIU Zhiguang, et al. Complex deep well drilling fluid technology for Well Wugu-4[J]. Oil Drilling & Production Technology, 2012, 34(6):36-38. doi: 10.3969/j.issn.1000-7393.2012.06.011 [30] 邱佩瑜, 潘翠萍, 张磊, 等. 京11断块水平井钻井液工艺技术[J]. 钻井液与完井液,2008,25(5):77-79. doi: 10.3969/j.issn.1001-5620.2008.05.027QIU Peiyu, PAN Cuiping, ZHANG Lei, et al. Drilling fluid technology and downhole troubles analysis for horizontal well in fault block Jing-11[J]. Drilling Fluid & Completion Fluid, 2008, 25(5):77-79. doi: 10.3969/j.issn.1001-5620.2008.05.027 -

计量
- 文章访问数: 62
- HTML全文浏览量: 15
- PDF下载量: 34
- 被引次数: 0