留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深水深层高温高压裂缝性呼吸效应动态响应特征

吴艳辉 黄洪林 罗鸣 李文拓 马传华 代锐 李军

吴艳辉,黄洪林,罗鸣,等. 深水深层高温高压裂缝性呼吸效应动态响应特征[J]. 钻井液与完井液,2025,42(2):167-179 doi: 10.12358/j.issn.1001-5620.2025.02.003
引用本文: 吴艳辉,黄洪林,罗鸣,等. 深水深层高温高压裂缝性呼吸效应动态响应特征[J]. 钻井液与完井液,2025,42(2):167-179 doi: 10.12358/j.issn.1001-5620.2025.02.003
WU Yanhui, HUANG Honglin, LUO Ming, et al.The dynamic response characteristics of ballooning effect in deep fractured high temperature high pressure formations in deep water drilling[J]. Drilling Fluid & Completion Fluid,2025, 42(2):167-179 doi: 10.12358/j.issn.1001-5620.2025.02.003
Citation: WU Yanhui, HUANG Honglin, LUO Ming, et al.The dynamic response characteristics of ballooning effect in deep fractured high temperature high pressure formations in deep water drilling[J]. Drilling Fluid & Completion Fluid,2025, 42(2):167-179 doi: 10.12358/j.issn.1001-5620.2025.02.003

深水深层高温高压裂缝性呼吸效应动态响应特征

doi: 10.12358/j.issn.1001-5620.2025.02.003
基金项目: 中海油“十四五”重大科技项目2下属课题1“深水超深水复杂井安全高效钻完井关键技术”(KJGG2022-0201);国家重大科研仪器研制项目“钻井复杂工况井下实时智能识别系统研制”(52227804)。
详细信息
    作者简介:

    吴艳辉,高级工程师,1988年生,现在从事海洋深水钻井技术工作。E-mail:wuyanhui_cnooc@126.com

    通讯作者:

    黄洪林,博士,工程师,1994年生,现在从事油气井岩石与渗流力学方面的研究。E-mail:huanghl_cup@163.com

  • 中图分类号: TE357.12

The Dynamic Response Characteristics of Ballooning Effect in Deep Fractured High Temperature High Pressure Formations in Deep Water Drilling

  • 摘要: 在深水深层,裂缝/裂隙较为发育,钻井过程中井筒压力的波动易诱发呼吸效应。同时,高温高压环境使得呼吸效应更加复杂。研究深水深层高温高压裂缝性呼吸效应动态响应,对加强井筒压力的控制、保证钻井安全具有重要意义。对此,本文考虑高温高压环境,构建井筒-裂缝-地层系统的温-压耦合模型,分析呼吸效应的动态响应及其影响因素。研究结果表明,在高温、低排量条件下,呼吸效应会受到一定程度的抑制。提高钻井液动切力、降低比热容有利于减少钻井液漏失;钻井液塑性黏度对呼吸效果影响显著,且存在临界值使得钻井液漏失量最低。在变形能力强的长裂缝地层中钻井时,发生呼吸效应的概率更高;同时,小缝宽裂缝地层或许会诱发更严重的呼吸效应。研究成果为裂缝性呼吸效应的预防和控制提供理论支持。

     

  • 图  1  深水深层高温高压裂缝性呼吸效应示意图

    图  2  裂缝传热示意图

    图  3  详细求解过程

    图  4  裂缝内流体压力变化

    图  5  模型模拟与室内实验模拟的呼吸效应全过程

    图  6  地温梯度对井底温度和压力的影响

    图  7  地温梯度对裂缝性呼吸效应的影响

    图  8  排量对井底压力的影响

    图  9  排量对裂缝性呼吸效应的影响

    图  10  黏度对井底温度和压力的影响

    图  11  黏度对裂缝性呼吸效应的影响

    图  12  动切力对钻井液侵入前缘的影响

    图  13  动切力对裂缝性呼吸效应的影响

    图  14  比热容对井底温度和压力的影响

    图  15  比热容对裂缝性呼吸效应的影响

    图  16  缝宽对钻井液漏失速率的影响

    图  17  缝宽对裂缝性呼吸效应的影响

    图  18  缝长对裂缝性呼吸效应的影响

    图  19  裂缝刚度对缝宽和裂缝性呼吸效应的影响

    表  1  模型回归系数

    ρ/kg·m−3 PV/mPa·s YP/Pa
    $ {\xi _p}$ 4.332×10−10 ${\xi ' _p}$ 1.111×10−2 ${\xi'' _p} $ 2.019×10−2
    ${\xi _{pp}} $ −2.000×10−18 ${\xi '_{pp}} $ −2.695×10−4 $ {\xi'' _{pp}}$ 3.395×10−4
    ${\xi _{pT}} $ 1.402×10−12 ${\xi '_{pT}} $ 1.121×10−4 ${\xi ''_{pT}} $ 1.112×10−4
    $ {\xi _T} $ −4.734×10−4 $ {\xi' _T} $ −8.694×10−3 ${\xi'' _T} $ −7.76×10−3
    $ {\xi _{TT}} $ 1.378×10−6 ${\xi '_{TT}} $ −8.694×10−3 ${\xi ''_{TT}}$ 4.101×10−6
    下载: 导出CSV

    表  2  井身结构参数

    名称 井眼直径/
    mm
    套管外径/
    mm
    套管内径/
    mm
    固井井深/
    m
    海水 800.00
    表层套管 406.4 273.05 248.65 1300.00
    油层套管 241.3 200.03 175.63 3500.00
    裸眼 171.5 4000.00
    下载: 导出CSV

    表  5  钻井基础参数

    井深/m YP/
    Pa
    PV/
    Pa·s
    钻井液入口
    温度/ ℃
    T地面/
    4000 6.0 0.04 25 20
    地温梯度/
    ℃/100 m
    钻井液排
    量/(L/s)
    钻杆转速/
    r/min
    机械钻速/
    m/h
    钻头直
    径/mm
    6.25 20 55 4 171.5
    下载: 导出CSV

    表  3  钻具组合参数

    名称外径/mm内径/mm长度/m累计长度/m
    钻杆101.6066.093647.624000.00
    加重钻杆101.6060.00336.24360.38
    钻铤120.0062.5016.7224.14
    MWD短节120.0056.700.817.42
    螺杆钻具135.006.316.61
    钻头171.500.300.30
    下载: 导出CSV

    表  4  热物性参数

    介质ρ/kg·m−3比热/(J/kg·℃)导热系数/(W/m·℃)
    钻井液185027551.73
    管柱780040043.75
    水泥214020000.70
    地层26408372.25
    下载: 导出CSV
  • [1] 罗鸣, 吴江, 陈浩东, 等. 南海西部窄安全密度窗口超高温高压钻井技术[J]. 石油钻探技术,2019,47(1):8-12. doi: 10.11911/syztjs.2019024

    LUO Ming, WU Jiang, CHEN Haodong, et al. Ultra-High temperature high pressure drilling technology for narrow safety density window strata in the western South China[J]. Petroleum Drilling Techniques, 2019, 47(1):8-12. doi: 10.11911/syztjs.2019024
    [2] 吴江, 李炎军, 张万栋, 等. 南海莺歌海盆地中深层高温高压水平井钻井关键技术[J]. 石油钻探技术,2020,48(2):63-69. doi: 10.11911/syztjs.2019112

    WU Jiang, LI Yanjun, ZHANG Wandong, et al. Key drilling techniques of HTHP horizontal wells in Mid-Deep strata of the Yinggehai Basin, South China sea[J]. Petroleum Drilling Techniques, 2020, 48(2):63-69. doi: 10.11911/syztjs.2019112
    [3] 杨宏伟. 深水变梯度控压钻井井筒压力分布规律与控制方法研究[D]. 北京: 中国石油大学(北京), 2020.

    YANG Hongwei. Study on wellbore pressure distribution and control method of variable gradient MPD in deep Wate[D]. Beijing: China University of Petroleum (Beijing), 2020.
    [4] 李军, 杨宏伟, 张辉, 等. 深水油气钻采井筒压力预测及其控制研究进展[J]. 中国科学基金,2021,35(6):973-983.

    LI Jun, YANG Hongwei, ZHANG Hui, et al. Progress of basic research on wellbore pressure control in deepwater oil and gas drilling and production[J]. Bulletin of National Natural Science Foundation of China, 2021, 35(6):973-983.
    [5] 孙金声,王韧,龙一夫,等. 我国钻井液技术难题、新进展及发展建议[J]. 钻井液与完井液,2024,41(1):1-30.

    SUN Jinsheng, WANG Ren, LONG Yifu, et al. Challenges, developments, and suggestions for drilling fluid technology in China[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):1-30
    [6] GAO R Y, LI J, LIU G H, et al. Experimental study on typical characteristics of borehole breathing under different pressure and rock type conditions[J]. Journal of Natural Gas Science and Engineering, 2020, 77:103241. doi: 10.1016/j.jngse.2020.103241
    [7] YANG H W, GAO R Y, LI J, et al. Dynamic response mechanism of borehole breathing in fractured formations[J]. Energy Reports, 2022, 8:3360-3374. doi: 10.1016/j.egyr.2022.02.148
    [8] ATKIN T. Numerical modelling to estimate the amount of formation deformation and its effect on cement integrity[D]. Leoben: University of Leoben, 2019.
    [9] ELMGERBI A, THONHAUSER G, ROOHI A, et al. General analytical solution for estimating the elastic deformation of an open borehole wall[J]. International Journal of Scientific and Engineering Research, 2016, 7(1):1056-1068.
    [10] RAM BABU D. Effect of P–ρ–T behavior of muds on loss/gain during high-temperature deep-well drilling[J]. Journal of Petroleum Science and Engineering, 1998, 20(1/2):49-62.
    [11] YUAN Z, MORRELL D, MAYANS A G, et al. Differentiate drilling fluid thermal expansion, wellbore ballooning and real kick during flow check with an innovative combination of transient simulation and pumps off annular pressure while drilling[C]//IADC/SPE Drilling Conference and Exhibition, 2016: SPE-178835-MS.
    [12] 黄洪林, 罗鸣, 吴艳辉, 等. 深水浅层钻井呼吸效应机制及影响因素分析[J]. 东北石油大学学报,2023,47(6):67-78. doi: 10.3969/j.issn.2095-4107.2023.06.006

    HUANG Honglin, LUO Ming, WU Yanhui, et al. Analysis of the breathing effect mechanism and influencing factors during drilling in deepwater shallow for-mations[J]. Journal of Northeast Petroleum University, 2023, 47(6):67-78. doi: 10.3969/j.issn.2095-4107.2023.06.006
    [13] HUANG H L, LI J, GAO R Y, et al. Investigation of the mechanisms and sensitivity of wellbore breathing effects during drilling in deepwater shallow formations[J]. Ocean Engineering, 2023, 269:113405. doi: 10.1016/j.oceaneng.2022.113405
    [14] 罗鸣, 高德利, 黄洪林, 等. 深水浅层呼吸效应机理及影响因素分析[J]. 钻井液与完井液,2022,39(6):668-676. doi: 10.12358/j.issn.1001-5620.2022.06.002

    LUO Ming, GAO Deli, HUANG Honglin, et al. Analyses of the ballooning effect and its affecting factors in drilling shallow formations in deep water[J]. Drilling Fluid & Completion Fluid, 2022, 39(6):668-676. doi: 10.12358/j.issn.1001-5620.2022.06.002
    [15] LAVROV A, TRONVOLL J. Mechanics of borehole ballooning in naturally-fractured formations[C]//SPE middle east oil and gas show and conference, 2005: SPE-93747-MS.
    [16] MAJIDI R, MISKA S Z, YU M, et al. Quantitative analysis of mud losses in naturally fractured reservoirs: the effect of rheology[J]. SPE Drilling & Completion, 2010, 25(4):509-517.
    [17] BJØRKEVOLL K S, VEFRING E H, ROMMETVEIT R, et al. Changes in active volume due to variations in pressure and temperature in HPHT wells[C]//7th Northern European Drilling Conference, 1994.

    BJØRKEVOLL K S, VEFRING E H, ROMMETVEIT R, et al. Changes in active volume due to variations in pressure and temperature in HPHT wells[C]//7th Northern European Drilling Conference, 1994.
    [18] SADD M. Elasticity: theory, applications, and numerics[J]. Aaee, 2014, 191(9):1843-1860.
    [19] TARR B A, LADENDORF D W, SANCHEZ D, et al. Next-generation kick detection during connections: influx detection at pumps stop(IDAPS)software[J]. SPE Drilling & Completion, 2016, 31(4):250-260.
    [20] YUAN Z, MORRELL D, MAYANS A G, et al. Differentiate drilling fluid thermal expansion, wellbore ballooning and real kick during flow check with an innovative combination of transient simulation and pumps off annular pressure while drilling[C]//SPE/IADC Drilling Conference and Exhibition, 2016: SPE-178835-MS.
    [21] HELSTRUP O A, RAHMAN K, CHEN Z, et al. Poroelastic effects on borehole ballooning in naturally fractured formations[C]//SPE/IADC Drilling Conference and Exhibition, 2003: SPE-79849-MS.
    [22] LAVROV A, TRONVOLL J. Mud loss into a single fracture during drilling of petroleum wells: modelling approach[M]. Carabas, Florida: CRC Press, 2003: 189-198.
    [23] OZDEMIRTAS M, BABADAGLI T, KURU E. Numerical modelling of borehole ballooning/breathing-effect of fracture roughness[C]//PETSOC Canadian International Petroleum Conference, 2007: PETSOC-2007-038.
    [24] SHAHRI M P, MEHRABI M. A new approach in modeling of fracture ballooning in naturally fractured reservoirs[C]//SPE Kuwait International Petroleum Conference and Exhibition, 2012: SPE-163382-MS.
    [25] BALDINO S, MISKA S Z, OZBAYOGLU E M. A novel approach to borehole-breathing investigation in naturally fractured formations[J]. SPE Drilling & Completion, 2019, 34(1):27-45.
    [26] 张更, 李军, 柳贡慧, 等. 海上高温高压井环空ECD精细预测模型[J]. 钻井液与完井液,2021,38(6):698-704. doi: 10.12358/j.issn.1001-5620.2021.06.006

    ZHANG Geng, LI Jun, LIU Gonghui, et al. A precise model for prediction of annular ECD in offshore HTHP wells[J]. Drilling Fluid & Completion Fluid, 2021, 38(6):698-704. doi: 10.12358/j.issn.1001-5620.2021.06.006
    [27] 廖高龙,梁豪,马双政,等. 钻井液可控因素对气藏损害归因分析形成的气井产能预测[J]. 钻井液与完井液,2024,41(3):330-336.

    LIAO Gaolong, LIANG Hao, MA Shuangzheng, et al. Prediction of gas well productivity based on attribution analysis of controllable factors of hem water-based drilling fluid to gas reservoir damage[J]. Drilling Fluid &Completion Fluid, 2024, 41(3):330-336
    [28] 王茜, 张菲菲, 李兴宝, 等. 瞬态通用固液两相流模型及其在动态井眼清洁模拟中的应用[J]. 应用力学学报,2021,38(3):1044-1053. doi: 10.11776/cjam.38.03.A081

    WANG Qian, ZHANG Feifei, LI Xingbao, et al. The research on transient general solid-liquid two-phase flow model and its application in dynamic hole cleaning simulation[J]. Chinese Journal of Applied Mechanics, 2021, 38(3):1044-1053. doi: 10.11776/cjam.38.03.A081
    [29] 安锦涛. 小井眼长水平井岩屑运移与井筒压力预测模型及控制方法研究[D]. 北京: 中国石油大学(北京), 2023.

    AN Jintao. Research on the prediction model and control method of cuttings transport and wellbore pressure in long horizontal wells with slim hole[D]. Beijing: China University of Petroleum(Beijing), 2023.
    [30] 庞博学. 非牛顿流体-颗粒两相流的颗粒动理学理论与数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    PANG Boxue. Kinetic theory and numerical simulation of Non-Newtonian fluid particle flow[D]. Harbin: Harbin Institute of Technology, 2021.
    [31] 罗攀登, 李涵宇, 翟立军, 等. 塔河油田超临界CO2压裂井筒与裂缝温度场[J]. 断块油气田,2019,26(2):225-230. doi: 10.6056/dkyqt201902019

    LUO Pandeng, LI Hanyu, ZHAI Lijun, et al. Supercritical CO2 fracturing wellbore and fracture temperature field in Tahe Oilfield[J]. Fault-Block Oil and Gas Field, 2019, 26(2):225-230. doi: 10.6056/dkyqt201902019
    [32] 幸雪松,袁俊亮,李忠慧,等. 南海深水高温高压条件下地层破裂压力的确定[J]. 石油钻探技术,2023,51(6):18-24.

    XING Xuesong, YUAN Junliang, LI Zhonghui, et al. Determination of formation fracture pressure under high temperature and high pressure in deep water of the South China Sea[J]. Petroleum Drilling Techniques, 2023, 51(6):18-24
    [33] 李大奇. 裂缝性地层钻井液漏失动力学研究[D]. 成都: 西南石油大学, 2012.

    LI Daqi. Numerical and experimental investigations of drilling fluid losses in fractured formations[D]. Chengdu: Southwest Petroleum University, 2012.
    [34] 李军. 碳酸盐岩超深水平井钻井技术[M]. 北京: 科学出版社, 2017.

    LI Jun. Drilling technology of ultra deep horizontal well in carbonate reservior[M]. Beijing: Science Press, 2017.
    [35] 曾义金,李大奇,陈曾伟,等. 基于自然语言处理与大数据分析的漏失分析与诊断[J]. 石油钻探技术,2023,51(6):1-11.

    ZENG Yijin, LI Daqi, CHEN Zengwei, et al. Loss analysis and diagnosis based on natural language processing and big data analysis[J]. Petroleum Drilling Techniques, 2023, 51(6):-
    [36] 吴艳辉,代锐,张磊,等. 深水井筒海水聚合物钻井液水合物生成抑制与堵塞物处理方法[J]. 钻井液与完井液,2023,40(4):415-422.

    WU Yanhui, DAI Rui, ZHANG Lei, et al. Study on methods of gas hydrate inhibition and blockage treatment using seawater polymer muds in deepwater well drilling[J]. Drilling Fluid & Completion Fluid, 2023, 40(4):415-422
  • 加载中
图(19) / 表(5)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  21
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-17
  • 修回日期:  2024-10-31
  • 录用日期:  2024-10-31
  • 刊出日期:  2025-04-17

目录

    /

    返回文章
    返回