The Dynamic Response Characteristics of Ballooning Effect in Deep Fractured High Temperature High Pressure Formations in Deep Water Drilling
-
摘要: 在深水深层,裂缝/裂隙较为发育,钻井过程中井筒压力的波动易诱发呼吸效应。同时,高温高压环境使得呼吸效应更加复杂。研究深水深层高温高压裂缝性呼吸效应动态响应,对加强井筒压力的控制、保证钻井安全具有重要意义。对此,本文考虑高温高压环境,构建井筒-裂缝-地层系统的温-压耦合模型,分析呼吸效应的动态响应及其影响因素。研究结果表明,在高温、低排量条件下,呼吸效应会受到一定程度的抑制。提高钻井液动切力、降低比热容有利于减少钻井液漏失;钻井液塑性黏度对呼吸效果影响显著,且存在临界值使得钻井液漏失量最低。在变形能力强的长裂缝地层中钻井时,发生呼吸效应的概率更高;同时,小缝宽裂缝地层或许会诱发更严重的呼吸效应。研究成果为裂缝性呼吸效应的预防和控制提供理论支持。Abstract: Deep formations in deep water area are developed with fractures and fissures, fluctuations in wellbore pressure during drilling can easily induce ballooning effect which is made complex by the high temperature high pressure (HTHP) downhole environment. Studies on the ballooning effect of fractures in HTHP deep formations in deep water area are important to the control of borehole pressure and the safety of drilling operation. Based on this idea, a temperature-pressure coupling model for HTHP borehole-fracture-formation system is constructed and used to analyze the dynamic response and affecting factors of the ballooning effect. The results of the study show that at high temperatures and low flowrates, the ballooning effect is to some extent inhibited. Increasing the yield point and decreasing the specific heat capacity of a drilling fluid are both beneficial to reducing the amount of the drilling fluid lost. The plastic viscosity of the drilling fluid significantly affects the ballooning effect, and a critical plastic viscosity can be determined at which the amount of the drilling fluid lost is minimum. When drilling in formations with long fractures which have strong deformable capacities, the probability of encountering ballooning effect is higher. Meanwhile, when drilling in formations with small and wide fractures, more severe ballooning effect may be induced. The research results can be used as a theoretical support to the prevention and control of ballooning effect in fractured formation drilling.
-
表 1 模型回归系数
ρ/kg·m−3 PV/mPa·s YP/Pa $ {\xi _p}$ 4.332×10−10 ${\xi ' _p}$ 1.111×10−2 ${\xi'' _p} $ 2.019×10−2 ${\xi _{pp}} $ −2.000×10−18 ${\xi '_{pp}} $ −2.695×10−4 $ {\xi'' _{pp}}$ 3.395×10−4 ${\xi _{pT}} $ 1.402×10−12 ${\xi '_{pT}} $ 1.121×10−4 ${\xi ''_{pT}} $ 1.112×10−4 $ {\xi _T} $ −4.734×10−4 $ {\xi' _T} $ −8.694×10−3 ${\xi'' _T} $ −7.76×10−3 $ {\xi _{TT}} $ 1.378×10−6 ${\xi '_{TT}} $ −8.694×10−3 ${\xi ''_{TT}}$ 4.101×10−6 表 2 井身结构参数
名称 井眼直径/
mm套管外径/
mm套管内径/
mm固井井深/
m海水 800.00 表层套管 406.4 273.05 248.65 1300.00 油层套管 241.3 200.03 175.63 3500.00 裸眼 171.5 4000.00 表 5 钻井基础参数
井深/m YP/
PaPV/
Pa·s钻井液入口
温度/ ℃T地面/
℃4000 6.0 0.04 25 20 地温梯度/
℃/100 m钻井液排
量/(L/s)钻杆转速/
r/min机械钻速/
m/h钻头直
径/mm6.25 20 55 4 171.5 表 3 钻具组合参数
名称 外径/mm 内径/mm 长度/m 累计长度/m 钻杆 101.60 66.09 3647.62 4000.00 加重钻杆 101.60 60.00 336.24 360.38 钻铤 120.00 62.50 16.72 24.14 MWD短节 120.00 56.70 0.81 7.42 螺杆钻具 135.00 6.31 6.61 钻头 171.50 0.30 0.30 表 4 热物性参数
介质 ρ/kg·m−3 比热/(J/kg·℃) 导热系数/(W/m·℃) 钻井液 1850 2755 1.73 管柱 7800 400 43.75 水泥 2140 2000 0.70 地层 2640 837 2.25 -
[1] 罗鸣, 吴江, 陈浩东, 等. 南海西部窄安全密度窗口超高温高压钻井技术[J]. 石油钻探技术,2019,47(1):8-12. doi: 10.11911/syztjs.2019024LUO Ming, WU Jiang, CHEN Haodong, et al. Ultra-High temperature high pressure drilling technology for narrow safety density window strata in the western South China[J]. Petroleum Drilling Techniques, 2019, 47(1):8-12. doi: 10.11911/syztjs.2019024 [2] 吴江, 李炎军, 张万栋, 等. 南海莺歌海盆地中深层高温高压水平井钻井关键技术[J]. 石油钻探技术,2020,48(2):63-69. doi: 10.11911/syztjs.2019112WU Jiang, LI Yanjun, ZHANG Wandong, et al. Key drilling techniques of HTHP horizontal wells in Mid-Deep strata of the Yinggehai Basin, South China sea[J]. Petroleum Drilling Techniques, 2020, 48(2):63-69. doi: 10.11911/syztjs.2019112 [3] 杨宏伟. 深水变梯度控压钻井井筒压力分布规律与控制方法研究[D]. 北京: 中国石油大学(北京), 2020.YANG Hongwei. Study on wellbore pressure distribution and control method of variable gradient MPD in deep Wate[D]. Beijing: China University of Petroleum (Beijing), 2020. [4] 李军, 杨宏伟, 张辉, 等. 深水油气钻采井筒压力预测及其控制研究进展[J]. 中国科学基金,2021,35(6):973-983.LI Jun, YANG Hongwei, ZHANG Hui, et al. Progress of basic research on wellbore pressure control in deepwater oil and gas drilling and production[J]. Bulletin of National Natural Science Foundation of China, 2021, 35(6):973-983. [5] 孙金声,王韧,龙一夫,等. 我国钻井液技术难题、新进展及发展建议[J]. 钻井液与完井液,2024,41(1):1-30.SUN Jinsheng, WANG Ren, LONG Yifu, et al. Challenges, developments, and suggestions for drilling fluid technology in China[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):1-30 [6] GAO R Y, LI J, LIU G H, et al. Experimental study on typical characteristics of borehole breathing under different pressure and rock type conditions[J]. Journal of Natural Gas Science and Engineering, 2020, 77:103241. doi: 10.1016/j.jngse.2020.103241 [7] YANG H W, GAO R Y, LI J, et al. Dynamic response mechanism of borehole breathing in fractured formations[J]. Energy Reports, 2022, 8:3360-3374. doi: 10.1016/j.egyr.2022.02.148 [8] ATKIN T. Numerical modelling to estimate the amount of formation deformation and its effect on cement integrity[D]. Leoben: University of Leoben, 2019. [9] ELMGERBI A, THONHAUSER G, ROOHI A, et al. General analytical solution for estimating the elastic deformation of an open borehole wall[J]. International Journal of Scientific and Engineering Research, 2016, 7(1):1056-1068. [10] RAM BABU D. Effect of P–ρ–T behavior of muds on loss/gain during high-temperature deep-well drilling[J]. Journal of Petroleum Science and Engineering, 1998, 20(1/2):49-62. [11] YUAN Z, MORRELL D, MAYANS A G, et al. Differentiate drilling fluid thermal expansion, wellbore ballooning and real kick during flow check with an innovative combination of transient simulation and pumps off annular pressure while drilling[C]//IADC/SPE Drilling Conference and Exhibition, 2016: SPE-178835-MS. [12] 黄洪林, 罗鸣, 吴艳辉, 等. 深水浅层钻井呼吸效应机制及影响因素分析[J]. 东北石油大学学报,2023,47(6):67-78. doi: 10.3969/j.issn.2095-4107.2023.06.006HUANG Honglin, LUO Ming, WU Yanhui, et al. Analysis of the breathing effect mechanism and influencing factors during drilling in deepwater shallow for-mations[J]. Journal of Northeast Petroleum University, 2023, 47(6):67-78. doi: 10.3969/j.issn.2095-4107.2023.06.006 [13] HUANG H L, LI J, GAO R Y, et al. Investigation of the mechanisms and sensitivity of wellbore breathing effects during drilling in deepwater shallow formations[J]. Ocean Engineering, 2023, 269:113405. doi: 10.1016/j.oceaneng.2022.113405 [14] 罗鸣, 高德利, 黄洪林, 等. 深水浅层呼吸效应机理及影响因素分析[J]. 钻井液与完井液,2022,39(6):668-676. doi: 10.12358/j.issn.1001-5620.2022.06.002LUO Ming, GAO Deli, HUANG Honglin, et al. Analyses of the ballooning effect and its affecting factors in drilling shallow formations in deep water[J]. Drilling Fluid & Completion Fluid, 2022, 39(6):668-676. doi: 10.12358/j.issn.1001-5620.2022.06.002 [15] LAVROV A, TRONVOLL J. Mechanics of borehole ballooning in naturally-fractured formations[C]//SPE middle east oil and gas show and conference, 2005: SPE-93747-MS. [16] MAJIDI R, MISKA S Z, YU M, et al. Quantitative analysis of mud losses in naturally fractured reservoirs: the effect of rheology[J]. SPE Drilling & Completion, 2010, 25(4):509-517. [17] BJØRKEVOLL K S, VEFRING E H, ROMMETVEIT R, et al. Changes in active volume due to variations in pressure and temperature in HPHT wells[C]//7th Northern European Drilling Conference, 1994.BJØRKEVOLL K S, VEFRING E H, ROMMETVEIT R, et al. Changes in active volume due to variations in pressure and temperature in HPHT wells[C]//7th Northern European Drilling Conference, 1994. [18] SADD M. Elasticity: theory, applications, and numerics[J]. Aaee, 2014, 191(9):1843-1860. [19] TARR B A, LADENDORF D W, SANCHEZ D, et al. Next-generation kick detection during connections: influx detection at pumps stop(IDAPS)software[J]. SPE Drilling & Completion, 2016, 31(4):250-260. [20] YUAN Z, MORRELL D, MAYANS A G, et al. Differentiate drilling fluid thermal expansion, wellbore ballooning and real kick during flow check with an innovative combination of transient simulation and pumps off annular pressure while drilling[C]//SPE/IADC Drilling Conference and Exhibition, 2016: SPE-178835-MS. [21] HELSTRUP O A, RAHMAN K, CHEN Z, et al. Poroelastic effects on borehole ballooning in naturally fractured formations[C]//SPE/IADC Drilling Conference and Exhibition, 2003: SPE-79849-MS. [22] LAVROV A, TRONVOLL J. Mud loss into a single fracture during drilling of petroleum wells: modelling approach[M]. Carabas, Florida: CRC Press, 2003: 189-198. [23] OZDEMIRTAS M, BABADAGLI T, KURU E. Numerical modelling of borehole ballooning/breathing-effect of fracture roughness[C]//PETSOC Canadian International Petroleum Conference, 2007: PETSOC-2007-038. [24] SHAHRI M P, MEHRABI M. A new approach in modeling of fracture ballooning in naturally fractured reservoirs[C]//SPE Kuwait International Petroleum Conference and Exhibition, 2012: SPE-163382-MS. [25] BALDINO S, MISKA S Z, OZBAYOGLU E M. A novel approach to borehole-breathing investigation in naturally fractured formations[J]. SPE Drilling & Completion, 2019, 34(1):27-45. [26] 张更, 李军, 柳贡慧, 等. 海上高温高压井环空ECD精细预测模型[J]. 钻井液与完井液,2021,38(6):698-704. doi: 10.12358/j.issn.1001-5620.2021.06.006ZHANG Geng, LI Jun, LIU Gonghui, et al. A precise model for prediction of annular ECD in offshore HTHP wells[J]. Drilling Fluid & Completion Fluid, 2021, 38(6):698-704. doi: 10.12358/j.issn.1001-5620.2021.06.006 [27] 廖高龙,梁豪,马双政,等. 钻井液可控因素对气藏损害归因分析形成的气井产能预测[J]. 钻井液与完井液,2024,41(3):330-336.LIAO Gaolong, LIANG Hao, MA Shuangzheng, et al. Prediction of gas well productivity based on attribution analysis of controllable factors of hem water-based drilling fluid to gas reservoir damage[J]. Drilling Fluid &Completion Fluid, 2024, 41(3):330-336 [28] 王茜, 张菲菲, 李兴宝, 等. 瞬态通用固液两相流模型及其在动态井眼清洁模拟中的应用[J]. 应用力学学报,2021,38(3):1044-1053. doi: 10.11776/cjam.38.03.A081WANG Qian, ZHANG Feifei, LI Xingbao, et al. The research on transient general solid-liquid two-phase flow model and its application in dynamic hole cleaning simulation[J]. Chinese Journal of Applied Mechanics, 2021, 38(3):1044-1053. doi: 10.11776/cjam.38.03.A081 [29] 安锦涛. 小井眼长水平井岩屑运移与井筒压力预测模型及控制方法研究[D]. 北京: 中国石油大学(北京), 2023.AN Jintao. Research on the prediction model and control method of cuttings transport and wellbore pressure in long horizontal wells with slim hole[D]. Beijing: China University of Petroleum(Beijing), 2023. [30] 庞博学. 非牛顿流体-颗粒两相流的颗粒动理学理论与数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2021.PANG Boxue. Kinetic theory and numerical simulation of Non-Newtonian fluid particle flow[D]. Harbin: Harbin Institute of Technology, 2021. [31] 罗攀登, 李涵宇, 翟立军, 等. 塔河油田超临界CO2压裂井筒与裂缝温度场[J]. 断块油气田,2019,26(2):225-230. doi: 10.6056/dkyqt201902019LUO Pandeng, LI Hanyu, ZHAI Lijun, et al. Supercritical CO2 fracturing wellbore and fracture temperature field in Tahe Oilfield[J]. Fault-Block Oil and Gas Field, 2019, 26(2):225-230. doi: 10.6056/dkyqt201902019 [32] 幸雪松,袁俊亮,李忠慧,等. 南海深水高温高压条件下地层破裂压力的确定[J]. 石油钻探技术,2023,51(6):18-24.XING Xuesong, YUAN Junliang, LI Zhonghui, et al. Determination of formation fracture pressure under high temperature and high pressure in deep water of the South China Sea[J]. Petroleum Drilling Techniques, 2023, 51(6):18-24 [33] 李大奇. 裂缝性地层钻井液漏失动力学研究[D]. 成都: 西南石油大学, 2012.LI Daqi. Numerical and experimental investigations of drilling fluid losses in fractured formations[D]. Chengdu: Southwest Petroleum University, 2012. [34] 李军. 碳酸盐岩超深水平井钻井技术[M]. 北京: 科学出版社, 2017.LI Jun. Drilling technology of ultra deep horizontal well in carbonate reservior[M]. Beijing: Science Press, 2017. [35] 曾义金,李大奇,陈曾伟,等. 基于自然语言处理与大数据分析的漏失分析与诊断[J]. 石油钻探技术,2023,51(6):1-11.ZENG Yijin, LI Daqi, CHEN Zengwei, et al. Loss analysis and diagnosis based on natural language processing and big data analysis[J]. Petroleum Drilling Techniques, 2023, 51(6):- [36] 吴艳辉,代锐,张磊,等. 深水井筒海水聚合物钻井液水合物生成抑制与堵塞物处理方法[J]. 钻井液与完井液,2023,40(4):415-422.WU Yanhui, DAI Rui, ZHANG Lei, et al. Study on methods of gas hydrate inhibition and blockage treatment using seawater polymer muds in deepwater well drilling[J]. Drilling Fluid & Completion Fluid, 2023, 40(4):415-422 -