Drilling fluid technology for deep subsurface Tako-1 well
-
摘要: 深地塔科1井是我国深地勘探领域的一项重大工程,其钻探过程中面临着超高温、超高压、超高盐等一系列极端工况,这些复杂条件给钻井液技术带来了巨大的挑战。钻井液作为钻井过程中的“血液”,其性能的优劣直接关系到钻井的成败。系统介绍了万米深层钻井液技术,在揭示钻井液关键处理剂耐超高温高盐机理及堵漏材料提高缝洞漏层承压能力机理的基础上,通过研制新材料、构建新体系、开发新软件,形成了抗温240℃抗盐水基钻井液、抗温240℃油基钻井液和恶性缝洞漏失堵漏3项关键核心技术,成功解决了钻井液高温性能恶化、井壁失稳、减摩降阻和恶性漏失等难题,在深地塔科1井四开、五开成功应用,为深地塔科1井顺利钻至10 910 m完钻提供了关键技术支撑。Abstract: The drilling process of deep-earth Tako-1 well is confronted with a series of extreme conditions such as ultra-high temperature, ultra-high pressure and ultra-high salt. These complex conditions bring great challenges to drilling fluid technology. As the "blood" in drilling process, the performance of drilling fluid is directly related to the success or failure of drilling. This paper systematically introduced the technology of 10,000 meters deep drilling fluid. On the basis of revealing the mechanism of ultra-high temperature and high salt resistance of the key treatment agent of drilling fluid and the mechanism of the plugging material improving the pressure bearing capacity of the fracture-cavity lose layer, through the development of new materials, the construction of new systems and the development of new software, It has formed three key core technologies, which are temperature resistant 240℃ salt-water resistant drilling fluid, temperature resistant 240℃ salt-oil based drilling fluid and malignant fracture- cavity leakage and plugging. It has successfully solved the problems such as the deterioration of drilling fluid's high temperature performance, wellbore instability, friction reduction, malignant leakage and formation pollution, and has been successfully applied in the deep-ground Tako-1 well. It provides key technical support for the successful drilling of the deep subsurface Tako-1 well to 10,910 meters.
-
表 1 超高温高盐流型调节剂性能评价(240℃老化)
CPL/
%AV /
mPa·sPV /
mPa·sYP/
PaGel/
Pa/PaFLAPI/
mLFLHTHP/
mL0 15.5 3 12.5 8.5/9.5 122.6 完全滤失 3 29.5 19 10.5 3.5/5.0 6.6 43.2 4 33.5 22 11.5 1.5/2.5 2.8 42.8 注:基浆:4%膨润土+15%NaCl;FLHTHP在200℃测定。 表 2 密度为1.6 g/cm3抗超高温高盐水基钻井液的抗温性
热滚
条件AV/
mPa·sPV/
mPa·sYP/
PaFLAPI/
mLFLHTHP/
mL热滚前 53 47 6 0.2 220℃×16 h 47 42 5 2.2 9.2 220℃×72 h 52 46 6 3.2 13.4 240℃×16 h 34 32 2 3.6 16.2 245℃×48 h 37 33 4 3.6 25.2 注:FLHTHP在200℃测定。 表 3 温压响应堵漏材料分类
系列 型号 适用温度/℃ 正/反向承压/MPa 水基类 低温型 50~80 21.2/21.3 中温型 80~150 22.1/23.1 高温型 150~180 21.5/21.7 超高温型 180~240 21.1/20.2 油基类 低温型 50~80 21.4/21.7 中温型 80~150 20.8/20.7 高温型 150~180 21.4/21.3 超高温型 180~240 22.7/22.4 表 4 深地塔科1井不同井深超高温钻井液性能参数
井深/
mT/
℃ρ/
g·cm−3FV/
sPV/
mPa·sYP/
PaGel/
Pa/PaFLHTHP/
mL7858 145 1.45 44 17 5.0 2.0/8.0 11.2 7946 150 1.45 45 17 7.0 2.5/10.0 12.0 8057 155 1.45 42 17 8.0 3.0/11.0 12.0 8116 160 1.45 42 18 7.0 2.5/11.0 11.0 8185 165 1.45 41 22 6.5 3.0/11.0 10.4 8265 165 1.45 42 20 5.5 2.5/9.0 10.0 8409 170 1.48 39 20 6.0 4.5/13.0 8.4 8512 170 1.52 56 22 8.0 3.5/10.5 7.8 8720 175 1.52 45 23 12.5 6.5/12.5 8.0 8899 178 1.45 40 20 4.0 2.0/5.0 9.0 8996 180 1.45 40 20 6.5 2.0/6.0 13.2 9100 180 1.45 41 24 8.0 3.0/5.0 14.8 9201 180 1.45 40 19 6.0 2.0/5.5 14.0 9340 185 1.45 40 24 6.0 2.0/5.0 12.0 9501 185 1.49 44 29 10.0 3.5/6.5 8.9 9618 185 1.49 46 32 11.5 3.5/7.0 11.8 9755 190 1.49 43 28 10.0 3.0/6.0 11.8 9840 190 1.49 42 25 9.0 3.0/6.0 11.4 9900 195 1.49 41 20 9.0 2.5/5.5 11.0 9949 195 1.42 41 21 8.0 2.0/5.0 12.0 9968 198 1.42 44 26 8.0 2.0/5.0 11.0 9977 198 1.42 44 26 8.0 2.0/5.0 11.0 10006 198 1.38 50 22 9.0 2.5/4.0 12.0 注:FLHTHP在200℃测定。 表 5 第一次断钻具前后井浆及室内新配浆性能
配方 工况 ρ/
g·cm−3PV/
mPa·sYP/
PaGel/
Pa/PaFLHTHP/
mL9977 m
井浆复杂前 1.42 26 8.0 2.0/5.0 11 复杂后返出 1.42 29 10.0 3.0/5.0 12 室内
新配浆老化前 1.52 27 5.0 2.5/8.5 200℃、3 d 1.52 22 7.0 3.5/10.0 200℃、5 d 1.52 19 5.5 2.0/5.0 14 注:FLHTHP在200℃测定。 表 6 深地塔科1井不同井深超高温钻井液性能参数
井深/
mρ/
g·cm−3FV/
sPV/
mPa·sYP/
PaGel/
Pa/PaFLHTHP/
mL10 057 1.37 56 32 8.0 1.5/2.0 15 10 151 1.38 60 38 11.0 1.5/3.0 15 10 261 1.33 59 40 10.0 2.0/5.0 11 10 363 1.06 58 21 11.0 3.0/5.0 14 10 461 1.06 50 19 10.0 1.5/2.5 14 10 565 1.06 48 19 8.5 1.5/3.0 14 10 673 1.06 52 20 8.0 1.5/3.0 14 10 800 1.06 51 19 8.5 1.5/3.0 14 10 910 1.06 50 19 8.5 1.5/3.0 14 注:FLHTHP在200℃测定。 表 7 不同井深下超高温油基钻井液性能参数
井深/
mρ/
g·cm−3FV/
sPV/
mPa·sYP/
PaGel/
Pa/PaFLHTHP/
mLES/
V9418 1.47 66 40 11 3.5/5.0 4.0 530 9457 1.47 81 58 18 6.0/10.0 4.0 530 9494 1.45 70 55 15 5.0/10.0 4.0 630 9530 1.46 62 50 11 2.5/5.5 5.4 580 9571 1.46 70 51 15 3.0/6.0 4.8 660 9603 1.46 67 47 12 2.5/6.0 4.6 860 9648 1.46 66 48 11 3.0/6.0 4.2 660 9753 1.46 67 47 12 2.5/6.0 4.6 660 9889 1.46 66 48 11 3.0/6.0 4.2 660 注:FLHTHP在180℃测定。 表 8 深地塔科1井五开井漏及堵漏情况
井深/
m钻井液密度/
g·cm−3漏速/
m3/h是否一次堵漏成功 9896 1.37 33.6 是,裂缝地层,
钻进无漏失9986 1.37 15.6 是,裂缝地层,
钻进无漏失10 003~10 026 1.37 33.6 是,裂缝地层,
恢复钻进10 026~10 041 1.35 4.8 是,裂缝地层,
恢复钻进10 165~10 176 1.35 38.4 是,裂缝地层,
恢复钻进10 189.2~10 388 1.35↓1.06 失返 串珠(溶洞)地层,
采用新工艺
一次堵漏成功 -
[1] 孙金声, 刘伟, 王庆, 等. 万米超深层油气钻完井关键技术面临挑战与发展展望[J]. 钻采工艺,2024,47(2):1-9.SUN Jinsheng, LIU Wei, WANG Qing, et al. Challenges and development prospects of oil and gas drilling and completion in myriametric deep formation in China[J]. Drilling & Production Technology, 2024, 47(2):1-9. [2] 孙金声, 王韧, 龙一夫. 我国钻井液技术难题、新进展及发展建议[J]. 钻井液与完井液,2024,41(1):1-30.SUN Jinsheng, WANG Ren, LONG Yifu. Challenges, developments, and suggestions for drilling fluid technology in China[J]. Drilling Fluid & Completion Fluid, 2024, 41(1):1-30. [3] 孙金声, 杨景斌, 吕开河, 等. 致密油气钻井液技术研究现状与展望[J]. 石油学报,2025,46(1):279-288.SUN Jinsheng, YANG Jingbin, LYU Kaihe, et al. Research status and prospects of drilling fluid technology for tight oil and gas[J]. Acta Petrolei Sinica, 2025, 46(1):279-288. [4] 孙金声, 杨景斌, 白英睿, 等. 深层超深层钻井液技术研究进展与展望[J]. 石油勘探与开发,2024,51(4):889-898.SUN Jinsheng, YANG Jingbin, BAI Yingrui, et al. Research progress and development of deep and ultra-deep drilling fluid technology[J]. Petroleum Exploration and Development, 2024, 51(4):889-898. [5] 石旻, 张大永, 马奈木俊介. 面向能源安全的我国油气行业市场化改革: 挑战、策略与展望[J]. 世界社会科学,2024(4):137-158.SHI Min, ZHANG Dayong, MANAI Mujunjie. Market reform in China's oil and gas industry for energy security: challenges, strategies, and prospects[J]. Social Sciences International, 2024(4):137-158. [6] 刘锋报, 尹达, 魏天星, 等. 塔里木山前盐底恶性漏失沉降堵漏技术[J]. 新疆石油天然气,2024,20(4):1-7.LIU Fengbao, YIN Da, WEI Tianxing, et al. Settling plugging technology for severe lost circulation at the salt Bottom of Tarim piedmont zone[J]. Xinjiang Oil & Gas, 2024, 20(4):1-7. [7] 孙金声, 杨景斌, 白英睿, 等. 裂缝性地层桥接堵漏技术发展综述与展望[J]. 石油科学通报,2023,8(4):415-431.SUN Jinsheng, YANG Jingbin, BAI Yingrui, et al. Review and prospect of bridging plugging technology in fractured formation[J]. Petroleum Science Bulletin, 2023, 8(4):415-431. [8] 刘岩生, 张佳伟, 黄洪春. 中国深层—超深层钻完井关键技术及发展方向[J]. 石油学报,2024,45(1):312-324.LIU Yansheng, ZHANG Jiawei, HUANG Hongchun. Key technologies and development direction for deep and ultra-deep drilling and completion in China[J]. Acta Petrolei Sinica, 2024, 45(1):312-324. [9] 王春生, 冯少波, 张志, 等. 深地塔科1井钻井设计关键技术[J]. 石油钻探技术,2024,52(2):78-86.WANG Chunsheng, FENG Shaobo, ZHANG Zhi, et al. Key technologies for drilling design of well Shendi Take-1[J]. Petroleum Drilling Techniques, 2024, 52(2):78-86. [10] 张正, 冉恒谦, 张毅, 等. 特深科学钻探装备技术现状与发展建议[J]. 钻探工程,2024,51(4):14-22.ZHANG Zheng, RAN Hengqian, ZHANG Yi, et al. Technical status and development suggestions of extra-deep scientific drilling equipment[J]. Drilling Engineering, 2024, 51(4):14-22. [11] 张恒春, 曹龙龙, 王文, 等. 万米科学特深井防斜纠斜技术方案及研究建议[J]. 钻探工程,2024,51(4):31-37.ZHANG Hengchun, CAO Longlong, WANG Wen, et al. Technical scheme and research suggestion of deviation prevention and correction for myriametric extra-deep scientific well[J]. Drilling Engineering, 2024, 51(4):31-37. [12] 谭宾, 张斌, 陶怀志. 深地勘探钻井技术现状及发展思考[J]. 钻采工艺,2024,47(2):70-82.TAN Bin, ZHANG Bin, TAO Huaizhi. Current situation and development of deep exploration key drilling technology[J]. Drilling & Production Technology, 2024, 47(2):70-82. [13] 刘锋报, 孙金声, 王建华. 国内外深井超深井钻井液技术现状及发展趋势[J]. 新疆石油天然气,2023,19(2):34-39. doi: 10.12388/j.issn.1673-2677.2023.02.004LIU Fengbao, SUN Jinsheng, WANG Jianhua. A global review of technical status and development trend of drilling fluids for deep and ultra-deep wells[J]. Xinjiang Oil & Gas, 2023, 19(2):34-39. doi: 10.12388/j.issn.1673-2677.2023.02.004 [14] 黎然, 李文哲, 张佳寅, 等. 万米深井SDCK1井上部超大尺寸井眼钻井液技术[J]. 石油钻探技术,2024,52(2):93-99. doi: 10.11911/syztjs.2024040LI Ran, LI Wenzhe, ZHANG Jiayin, et al. Drilling fluid technology for Ultra-Large wellbore in the upper part of 10 000-meter deep Well SDCK1[J]. Petroleum Drilling Techniques, 2024, 52(2):93-99. doi: 10.11911/syztjs.2024040 -