[1] |
刘合, 任义丽, 李欣, 等. 油气行业人工智能大模型应用研究现状及展望[J]. 石油勘探与开发,2024,51(4):910-923. doi: 10.11698/PED.20240254LIU He, REN Yili, LI Xin, et al. Research status and application of artificial intelligence large models in the oil and gas industry[J]. Petroleum Exploration and Development, 2024, 51(4):910-923. doi: 10.11698/PED.20240254
|
[2] |
李剑峰. 油气工业数字化智能化发展趋势[J]. 石油科技论坛,2023,42(3):10-21. doi: 10.3969/j.issn.1002-302x.2023.03.002LI Jianfeng. Digital and intelligent development trend of oil and gas industry[J]. Petroleum Science and Technology Forum, 2023, 42(3):10-21. doi: 10.3969/j.issn.1002-302x.2023.03.002
|
[3] |
中国信息通信研究院. 工业大模型技术应用与发展报告1.0[R]. 中国信通院, 2023.
|
[4] |
窦宏恩, 李彦辉, 张蕾, 等. 通用人工智能发展现状及在油气行业应用探索[J]. 钻采工艺,2025,48(1):10-20.DOU Hongen, LI Yanhui, ZHANG Lei, et al. The current status of general artificial intelligence development and exploratory applications in the oil and gas industry[J]. Drilling & Production Technology, 2025, 48(1):10-20.
|
[5] |
DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Minneapolis, Minnesota, 2019: 4171–4186.
|
[6] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL]. (2023-08-02)[2025-2-18]. https://arxiv.org/abs/1706.03762.
|
[7] |
夏润泽, 李丕绩. ChatGPT大模型技术发展与应用[J]. 数据采集与处理,2023,38(5):1017-1034.XIA Runze, LI Piji. Large language model ChatGPT: evolution and application[J]. Journal of Data Acquisition & Processing, 2023, 38(5):1017-1034.
|
[8] |
蔡天琪, 蔡恒进. DeepSeek的技术创新与生成式AI的能力上限[J/OL]. 新疆师范大学学报(哲学社会科学版). (2025-02-17)[2025-02-18]. https://doi.org/10.14100/j.cnki.65-1039/g4.20250217.002.
|
[9] |
段玉聪. 抢占AI话语权: DeepSeek的技术优势, 战略布局与未来生态图景[J]. 新疆师范大学学报(哲学社会科学版). (2025-02-17)[2025-02-18]. https://link.cnki.net/doi/10.14100/j.cnki.65-1039/g4.20250217.001.
|
[10] |
顾梦轩, 夏欣. DeepSeek引发AI+变革浪潮2025年AI行情可期[N]. 中国经营报. 2025-02-17(C1).
|
[11] |
任海玉, 刘建平, 王健, 等. 基于大语言模型的智能问答系统研究综述[J/OL]. 计算机工程与应用. (2024-12-30)[2025-02-18]. http://kns.cnki.net/kcms/detail/11.2127.TP.20241227.1952.011.html.REN Haiyu, LIU Jianping, WANG Jian, et al. Research on intelligent question answering system based on large language model: a survey[J]. Computer Engineering and Applications. (2024-12-30)[2025-02-18]. http://kns.cnki.net/kcms/detail/11.2127.TP.20241227.1952.011.html.
|
[12] |
尹文昕, 于海琛, 刁文辉, 等. 遥感场景理解中视觉Transformer的参数高效微调[J]. 电子与信息学报,2024,46(9):3731-3738. doi: 10.11999/JEIT240218YIN Wenxin, YU Haichen, DIAO Wenhui, et al. Parameter efficient fine-tuning of vision transformers for remote sensing scene understanding[J]. Journal of Electronics & Information Technology, 2024, 46(9):3731-3738. doi: 10.11999/JEIT240218
|
[13] |
GAO Y F, XIONG Y, GAO X Y, et al. Retrieval-augmented generation for large language models: A survey[EB/OL]. (2024-03-27)[2025-02-18]. https://arxiv.org/abs/2312.10997.
|
[14] |
贾春燕, 方伟杰, 谢宇威, 等. 检索增强生成技术支持下的校园问答系统研究[J]. 通信学报,2024,45(S2):248-254.JIA Chunyan, FANG Weijie, XIE Yuwei, et al. Research on campus question answering system supported by retrieval-augmented generation technology[J]. Journal on Communications, 2024, 45(S2):248-254.
|
[15] |
李子林, 王跃, 刘庆猛, 等. 面向铁路知识问答的知识过滤检索增强生成方法[J]. 中国铁路,2024(12):121-129.LI Zilin, WANG Yue, LIU Qingmeng, et al. A knowledge filtering Retrieval-Augmented generation method for railway knowledge-based question answering[J]. Chinese Railways, 2024(12):121-129.
|
[16] |
李鹏, 宿雲龙, 宁昊, 等. 基于嵌入式YOLO网络的电力绝缘子自爆缺陷检测[J]. 电工技术学报. (2025-02-18)[2025-02-18]. https://link.cnki.net/doi/10.19595/j.cnki.1000-6753.tces.242110.
|
[17] |
柯红梅, 徐远. 复杂场景下的车辆检测算法研究及其优化[J]. 福建电脑,2024,40(9):7-11.KE Hongmei, XU Yuan. Research and optimization of vehicle detection algorithms in complex scenarios[J]. Fujian Computer, 2024, 40(9):7-11.
|
[18] |
江海涛. 基于Python的罗克韦尔语音报警系统设计与实现[J]. 现代信息科技,2024,8(17):169-172,178.JIANG Haitao. Design and implementation of rockwell voice alarm system based on python[J]. Modern Informationn Technology, 2024, 8(17):169-172,178.
|
[19] |
宋婧. 2025年值得期待的10个工业大模型[N]. 中国电子报. 2025-01-10(06).
|
[20] |
张华桥. 深耕医疗领域多项创新实践落地[N]. 东莞日报. 2023-12-11(A04).
|
[21] |
李雯珊. 华为云发布盘古大模型3.0AI加速赋能千行百业[N]. 证券日报. 2023-07-08(A03).
|
[22] |
徐甲甲. 工业大模型引领工业互联网发展新趋势[J]. 数字经济,2023(8):60-63.
|
[23] |
牛畅. 坚定科技自立自强, 坚持用AI创造工业价值[N]. 中华工商时报. 2025-01-22(01).
|
[24] |
吴根权. 羚羊3.0"赋能制造业数字化转型[N]. 安徽经济报. 2023-10-14(02).
|
[25] |
LIN Z M, AKIN H, RAO S, et al. Language models of protein sequences at the scale of evolution enable accurate structure prediction[J/OL]. BioRxiv. (2022-07-21)[2025-02-18]. https://www.biorxiv.org/content/10.1101/2022.07.20.500902v1.article-info.
|
[26] |
刘冀辰, 李金星, 吴佳, 等. 大模型技术在电力行业的应用展望[J]. 图学学报,2024,45(6):1132-1144.LIU Jichen, LI Jinxing, WU Jia, et al. Prospects for the application of large models technology in the power industry[J]. Journal of Graphics, 2024, 45(6):1132-1144.
|
[27] |
NDRURU A J, FIKRY M, YUSRA. Chatbot PTIPD customer care center service using dialogfow[J]. Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika, 2023, 20(2):101-111. doi: 10.33751/komputasi.v20i2.8281
|
[28] |
杨扬. 人工智能+", 中国联通怎么加?[N]. 人民邮电. 2024-07-29(02).
|
[29] |
智振, 李森. 工业大模型的演进及落地方向[J]. 服务外包,2025(1):68-73.
|
[30] |
陈尚书. 基于AIGC人工智能生成式室内效果图的方法论研究[J]. 艺术品鉴,2024(17):105-108.
|
[31] |
向历霓, 李刚, 李海江. 基于知识图谱和GPT模型的可靠性代码自动生成方法[J]. 计算力学学报,2024,41(2):217-225. doi: 10.7511/jslx20231022001XIANG Lini, LI Gang, LI Haijiang. Automatic code generation method for structural reliability analysis based on knowledge graphs and GPT models[J]. Chinese Journal of Computational Mechanics, 2024, 41(2):217-225. doi: 10.7511/jslx20231022001
|
[32] |
耿黎东. 大数据技术在石油工程中的应用现状与发展建议[J]. 石油钻探技术,2021,49(2):72-78. doi: 10.11911/syztjs.2020134GENG Lidong. Application status and development suggestions of big data technology in petroleum engineering[J]. Petroleum Drilling Techniques, 2021, 49(2):72-78. doi: 10.11911/syztjs.2020134
|
[33] |
匡立春, 刘合, 任义丽, 等. 人工智能在石油勘探开发领域的应用现状与发展趋势[J]. 石油勘探与开发,2021,48(1):1-11. doi: 10.11698/PED.2021.01.01KUANG Lichun, LIU He, REN Yili, et al. Application and development trend of artificial intelligence in petroleum exploration and development[J]. Petroleum Exploration and Development, 2021, 48(1):1-11. doi: 10.11698/PED.2021.01.01
|
[34] |
杨明澔, 李小波, 刘兴邦, 等. 人工智能大模型在油气勘探开发领域的应用及挑战[J]. 石油科技论坛,2024,43(6):107-113,125. doi: 10.3969/j.issn.1002-302X.2024.06.013YANG Minghao, LI Xiaobo, LIU Xingbang, et al. Application of artificial intelligence pretrained foundation models in exploration and development and challenges in this area[J]. Oil Forum, 2024, 43(6):107-113,125. doi: 10.3969/j.issn.1002-302X.2024.06.013
|
[35] |
段鸿杰, 马承杰, 王振, 等. 胜利油田油气认知大模型建设与应用[J]. 石油科技论坛,2024,43(6):46-55. doi: 10.3969/j.issn.1002-302X.2024.06.006DUAN Hongjie, MA Chengjie, WANG Zhen, et al. Large language model of oil and gas cognition constructed and applied in Shengli oilfield[J]. Oil Forum, 2024, 43(6):46-55. doi: 10.3969/j.issn.1002-302X.2024.06.006
|
[36] |
石玉江, 周军, 李雄伟, 等. 测井人工智能应用场景及实现[J]. 石油科技论坛,2024,43(6):28-37. doi: 10.3969/j.issn.1002-302X.2024.06.004SHI Yujiang, ZHOU Jun, LI Xiongwei, et al. Scenario and realization of logging artificial intelligence application[J]. Oil Forum, 2024, 43(6):28-37. doi: 10.3969/j.issn.1002-302X.2024.06.004
|
[37] |
国家能源局. 2024年全国油气勘探开发十大标志性成果[DB/OL]. (2025-01-20)[2025-02-18]. https://www.doc88.com/p-88068478021009.html.
|
[38] |
山东省工业和信息化厅. 国家级工业互联网平台巡礼(第三期) 工业为海云作帆!胜软云帆赋能工业企业“智改数转”提速升级[DB/OL]. (2025-01-02)[2025-02-18]. http://gxt.shandong.gov.cn/art/2025/1/2/art_349340_10347752.html.
|
[39] |
李根生, 宋先知, 祝兆鹏, 等. 智能钻完井技术研究进展与前景展望[J]. 石油钻探技术,2023,51(4):35-47. doi: 10.11911/syztjs.2023040LI Gensheng, SONG Xianzhi, ZHU Zhaopeng, et al. Research progress and the prospect of intelligent drilling and completion technologies[J]. Petroleum Drilling Techniques, 2023, 51(4):35-47. doi: 10.11911/syztjs.2023040
|
[40] |
王志刚, 王稳石, 张立烨, 等. 万米科学超深井钻完井现状与展望[J]. 科技导报,2022,40(13):27-35.WANG Zhigang, WANG Wenshi, ZHANG Liye, et al. Present situation and prospect of drilling and completion of 10000 meter scientific ultra deep wells[J]. Science & Technology Review, 2022, 40(13):27-35.
|
[41] |
赵金海, 张洪宁, 王恒, 等. 中国石化超深层钻完井关键技术挑战及展望[J]. 钻采工艺,2024,47(2):28-34. doi: 10.3969/J.ISSN.1006-768X.2024.02.04ZHAO Jinhai, ZHANG Hongning, WANG Heng, et al. Key technical challenges and prospects of drilling and completion in ultra-deep reservoirs, sinopec[J]. Drilling & Production Technology, 2024, 47(2):28-34. doi: 10.3969/J.ISSN.1006-768X.2024.02.04
|
[42] |
程诗蕾, 程国建. 基于YOLOv8的井场设施安全实时监测新算法[J]. 石油工业技术监督,2024,40(9):45-50.CHENG Shilei, CHENG Guojian. A new Real-Time monitoring algorithm for safety of wellsite facilities based on YOLOv8[J]. Technology Supervision in Petroleum Industry, 2024, 40(9):45-50.
|
[43] |
孙亚招, 王景浩, 李宗祥. 基于改进YOLOv7算法的井场作业安全检测方法研究[J]. 石油工业技术监督,2024,40(5):43-47,70.SUN Yazhao, WANG Jinghao, LI Zongxiang. Research on safety detection method of well site operation based on improved YOLOv7 algorithm[J]. Technology Supervision in Petroleum Industry, 2024, 40(5):43-47,70.
|
[44] |
刘慧舟, 胡瑾秋, 张来斌, 等. 基于红外热成像与CNN的压裂装备故障精准识别及预警[J]. 中国石油大学学报(自然科学版),2021,45(1):158-166.LIU Huizhou, HU Jinqiu, ZHANG Laibin, et al. Accurate identification and early-warning of faults of fracturing equipments based on infrared thermal imaging and convolutional neural network[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(1):158-166.
|
[45] |
胡瑾秋, 张立强, 张来斌. 石油化工装置长周期运行风险超早期精确预警方法[J]. 石油学报(石油加工),2019,35(3):527-533.HU Jinqiu, ZHANG Liqiang, ZHANG Laibin. Precise Risk-Ultra-Early-Warning method for long period running petrochemical devices[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2019, 35(3):527-533.
|
[46] |
HU J Q, CHEN C A, LIU Z Y. Early warning method for overseas natural gas pipeline accidents based on FDOOBN under severe environmental conditions[J]. Process Safety and Environmental Protection, 2022, 157:175-192. doi: 10.1016/j.psep.2021.10.046
|
[47] |
胡瑾秋, 崔靖直, 胡洋柏, 等. 井场智能化建设安全保障技术研究进展与发展趋势[J]. 工业安全与环保,2024,50(12):69-73. doi: 10.3969/j.issn.1001-425X.2024.12.012HU Jinqiu, CUI Jingzhi, HU Yangbai, et al. Research progress and development trends of safety guarantee technology for well field intelligent construction[J]. Industrial Safety and Environmental Protection, 2024, 50(12):69-73. doi: 10.3969/j.issn.1001-425X.2024.12.012
|
[48] |
罗晓容, 杨海军, 王震亮, 等. 深层—超深层碎屑岩储层非均质性特征与油气成藏模式[J]. 地质学报,2023,97(9):2802-2819.LUO Xiaorong, YANG Haijun, WANG Zhenliang, et al. Heterogeneity characteristics of clastic reservoirs and hydrocarbon accumulation mode in deep-ultradeep basins[J]. Acta Geologica Sinica, 2023, 97(9):2802-2819.
|
[49] |
尚墨翰, 赵向原, 曾大乾, 等. 深层海相碳酸盐岩储层非均质性研究进展[J]. 油气地质与采收率,2021,28(5):32-49.SHANG Mohan, ZHAO Xiangyuan, ZENG Daqian, et al. Research progress on heterogeneity of deep marine carbonate reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(5):32-49.
|
[50] |
陈宏志, 宫本儒, 王笑妍, 等. 预训练大模型在油气领域的价值场景、挑战及未来方向[J]. 现代信息科技,2024,8(13):129-135.CHEN Hongzhi, GONG Benru, WANG Xiaoyan, et al. Value scenarios and challenges and future directions of pre-trained AI big model in the oil and gas field[J]. Modern Informationn Technology, 2024, 8(13):129-135.
|