留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

油气大模型在钻完井领域的应用研究现状及展望

吴耀辉 刘梅全 李雪松 刘长跃

吴耀辉,刘梅全,李雪松,等. 油气大模型在钻完井领域的应用研究现状及展望[J]. 钻井液与完井液,2025,42(2):143-154 doi: 10.12358/j.issn.1001-5620.2025.02.001
引用本文: 吴耀辉,刘梅全,李雪松,等. 油气大模型在钻完井领域的应用研究现状及展望[J]. 钻井液与完井液,2025,42(2):143-154 doi: 10.12358/j.issn.1001-5620.2025.02.001
WU Yaohui, LIU Meiquan, LI Xuesong, et al.The status-quo of the application and research and prospect of oil and gas large model in well drilling and completion industry[J]. Drilling Fluid & Completion Fluid,2025, 42(2):143-154 doi: 10.12358/j.issn.1001-5620.2025.02.001
Citation: WU Yaohui, LIU Meiquan, LI Xuesong, et al.The status-quo of the application and research and prospect of oil and gas large model in well drilling and completion industry[J]. Drilling Fluid & Completion Fluid,2025, 42(2):143-154 doi: 10.12358/j.issn.1001-5620.2025.02.001

油气大模型在钻完井领域的应用研究现状及展望

doi: 10.12358/j.issn.1001-5620.2025.02.001
详细信息
    作者简介:

    吴耀辉,1997年9月出生,毕业于圣彼得堡彼得大帝理工大学金融学专业,现从事钻完井技术、信息化技术和金融管理工作。E-mail:wuyaohui@cnpc.com.cn

  • 中图分类号: TE319

The Status-Quo of the Application and Research and Prospect of Oil and Gas Large Model in Well Drilling and Completion Industry

  • 摘要: 以工业大模型为代表的人工智能技术在油气勘探开发中发挥着重要作用,既能有效降低成本、提升效率,也是推动关键技术创新升级、增强行业竞争力的重要途径。通过阐述工业大模型技术的核心特征及构建模式,总结了工业大模型技术的发展现状。油气大模型是工业大模型的重要领域之一。梳理了油气大模型在国内外的应用现状并在此基础上展望油气大模型在国内油气行业钻完井领域内的应用场景,比如钻井提速、钻井轨迹优化等。同时分析了油气大模型在钻完井领域应用过程中面临的问题和挑战并提出针对性建议,希望为油气大模型在钻完井领域的应用提供借鉴和研发思路。

     

  • 图  1  油气大模型支撑钻完井领域实现场景赋能

    图  2  油气大模型在钻井速度提升中的应用

    图  3  油气大模型在钻井轨迹预测与优化中的应用

    图  4  油气大模型在井下复杂工况预警中的应用

    图  5  油气大模型在完井方案智能设计中的应用

    图  6  油气大模型在钻井液性能智能评估中的应用

  • [1] 刘合, 任义丽, 李欣, 等. 油气行业人工智能大模型应用研究现状及展望[J]. 石油勘探与开发,2024,51(4):910-923. doi: 10.11698/PED.20240254

    LIU He, REN Yili, LI Xin, et al. Research status and application of artificial intelligence large models in the oil and gas industry[J]. Petroleum Exploration and Development, 2024, 51(4):910-923. doi: 10.11698/PED.20240254
    [2] 李剑峰. 油气工业数字化智能化发展趋势[J]. 石油科技论坛,2023,42(3):10-21. doi: 10.3969/j.issn.1002-302x.2023.03.002

    LI Jianfeng. Digital and intelligent development trend of oil and gas industry[J]. Petroleum Science and Technology Forum, 2023, 42(3):10-21. doi: 10.3969/j.issn.1002-302x.2023.03.002
    [3] 中国信息通信研究院. 工业大模型技术应用与发展报告1.0[R]. 中国信通院, 2023.
    [4] 窦宏恩, 李彦辉, 张蕾, 等. 通用人工智能发展现状及在油气行业应用探索[J]. 钻采工艺,2025,48(1):10-20.

    DOU Hongen, LI Yanhui, ZHANG Lei, et al. The current status of general artificial intelligence development and exploratory applications in the oil and gas industry[J]. Drilling & Production Technology, 2025, 48(1):10-20.
    [5] DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Minneapolis, Minnesota, 2019: 4171–4186.
    [6] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL]. (2023-08-02)[2025-2-18]. https://arxiv.org/abs/1706.03762.
    [7] 夏润泽, 李丕绩. ChatGPT大模型技术发展与应用[J]. 数据采集与处理,2023,38(5):1017-1034.

    XIA Runze, LI Piji. Large language model ChatGPT: evolution and application[J]. Journal of Data Acquisition & Processing, 2023, 38(5):1017-1034.
    [8] 蔡天琪, 蔡恒进. DeepSeek的技术创新与生成式AI的能力上限[J/OL]. 新疆师范大学学报(哲学社会科学版). (2025-02-17)[2025-02-18]. https://doi.org/10.14100/j.cnki.65-1039/g4.20250217.002.
    [9] 段玉聪. 抢占AI话语权: DeepSeek的技术优势, 战略布局与未来生态图景[J]. 新疆师范大学学报(哲学社会科学版). (2025-02-17)[2025-02-18]. https://link.cnki.net/doi/10.14100/j.cnki.65-1039/g4.20250217.001.
    [10] 顾梦轩, 夏欣. DeepSeek引发AI+变革浪潮2025年AI行情可期[N]. 中国经营报. 2025-02-17(C1).
    [11] 任海玉, 刘建平, 王健, 等. 基于大语言模型的智能问答系统研究综述[J/OL]. 计算机工程与应用. (2024-12-30)[2025-02-18]. http://kns.cnki.net/kcms/detail/11.2127.TP.20241227.1952.011.html.

    REN Haiyu, LIU Jianping, WANG Jian, et al. Research on intelligent question answering system based on large language model: a survey[J]. Computer Engineering and Applications. (2024-12-30)[2025-02-18]. http://kns.cnki.net/kcms/detail/11.2127.TP.20241227.1952.011.html.
    [12] 尹文昕, 于海琛, 刁文辉, 等. 遥感场景理解中视觉Transformer的参数高效微调[J]. 电子与信息学报,2024,46(9):3731-3738. doi: 10.11999/JEIT240218

    YIN Wenxin, YU Haichen, DIAO Wenhui, et al. Parameter efficient fine-tuning of vision transformers for remote sensing scene understanding[J]. Journal of Electronics & Information Technology, 2024, 46(9):3731-3738. doi: 10.11999/JEIT240218
    [13] GAO Y F, XIONG Y, GAO X Y, et al. Retrieval-augmented generation for large language models: A survey[EB/OL]. (2024-03-27)[2025-02-18]. https://arxiv.org/abs/2312.10997.
    [14] 贾春燕, 方伟杰, 谢宇威, 等. 检索增强生成技术支持下的校园问答系统研究[J]. 通信学报,2024,45(S2):248-254.

    JIA Chunyan, FANG Weijie, XIE Yuwei, et al. Research on campus question answering system supported by retrieval-augmented generation technology[J]. Journal on Communications, 2024, 45(S2):248-254.
    [15] 李子林, 王跃, 刘庆猛, 等. 面向铁路知识问答的知识过滤检索增强生成方法[J]. 中国铁路,2024(12):121-129.

    LI Zilin, WANG Yue, LIU Qingmeng, et al. A knowledge filtering Retrieval-Augmented generation method for railway knowledge-based question answering[J]. Chinese Railways, 2024(12):121-129.
    [16] 李鹏, 宿雲龙, 宁昊, 等. 基于嵌入式YOLO网络的电力绝缘子自爆缺陷检测[J]. 电工技术学报. (2025-02-18)[2025-02-18]. https://link.cnki.net/doi/10.19595/j.cnki.1000-6753.tces.242110.
    [17] 柯红梅, 徐远. 复杂场景下的车辆检测算法研究及其优化[J]. 福建电脑,2024,40(9):7-11.

    KE Hongmei, XU Yuan. Research and optimization of vehicle detection algorithms in complex scenarios[J]. Fujian Computer, 2024, 40(9):7-11.
    [18] 江海涛. 基于Python的罗克韦尔语音报警系统设计与实现[J]. 现代信息科技,2024,8(17):169-172,178.

    JIANG Haitao. Design and implementation of rockwell voice alarm system based on python[J]. Modern Informationn Technology, 2024, 8(17):169-172,178.
    [19] 宋婧. 2025年值得期待的10个工业大模型[N]. 中国电子报. 2025-01-10(06).
    [20] 张华桥. 深耕医疗领域多项创新实践落地[N]. 东莞日报. 2023-12-11(A04).
    [21] 李雯珊. 华为云发布盘古大模型3.0AI加速赋能千行百业[N]. 证券日报. 2023-07-08(A03).
    [22] 徐甲甲. 工业大模型引领工业互联网发展新趋势[J]. 数字经济,2023(8):60-63.
    [23] 牛畅. 坚定科技自立自强, 坚持用AI创造工业价值[N]. 中华工商时报. 2025-01-22(01).
    [24] 吴根权. 羚羊3.0"赋能制造业数字化转型[N]. 安徽经济报. 2023-10-14(02).
    [25] LIN Z M, AKIN H, RAO S, et al. Language models of protein sequences at the scale of evolution enable accurate structure prediction[J/OL]. BioRxiv. (2022-07-21)[2025-02-18]. https://www.biorxiv.org/content/10.1101/2022.07.20.500902v1.article-info.
    [26] 刘冀辰, 李金星, 吴佳, 等. 大模型技术在电力行业的应用展望[J]. 图学学报,2024,45(6):1132-1144.

    LIU Jichen, LI Jinxing, WU Jia, et al. Prospects for the application of large models technology in the power industry[J]. Journal of Graphics, 2024, 45(6):1132-1144.
    [27] NDRURU A J, FIKRY M, YUSRA. Chatbot PTIPD customer care center service using dialogfow[J]. Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika, 2023, 20(2):101-111. doi: 10.33751/komputasi.v20i2.8281
    [28] 杨扬. 人工智能+", 中国联通怎么加?[N]. 人民邮电. 2024-07-29(02).
    [29] 智振, 李森. 工业大模型的演进及落地方向[J]. 服务外包,2025(1):68-73.
    [30] 陈尚书. 基于AIGC人工智能生成式室内效果图的方法论研究[J]. 艺术品鉴,2024(17):105-108.
    [31] 向历霓, 李刚, 李海江. 基于知识图谱和GPT模型的可靠性代码自动生成方法[J]. 计算力学学报,2024,41(2):217-225. doi: 10.7511/jslx20231022001

    XIANG Lini, LI Gang, LI Haijiang. Automatic code generation method for structural reliability analysis based on knowledge graphs and GPT models[J]. Chinese Journal of Computational Mechanics, 2024, 41(2):217-225. doi: 10.7511/jslx20231022001
    [32] 耿黎东. 大数据技术在石油工程中的应用现状与发展建议[J]. 石油钻探技术,2021,49(2):72-78. doi: 10.11911/syztjs.2020134

    GENG Lidong. Application status and development suggestions of big data technology in petroleum engineering[J]. Petroleum Drilling Techniques, 2021, 49(2):72-78. doi: 10.11911/syztjs.2020134
    [33] 匡立春, 刘合, 任义丽, 等. 人工智能在石油勘探开发领域的应用现状与发展趋势[J]. 石油勘探与开发,2021,48(1):1-11. doi: 10.11698/PED.2021.01.01

    KUANG Lichun, LIU He, REN Yili, et al. Application and development trend of artificial intelligence in petroleum exploration and development[J]. Petroleum Exploration and Development, 2021, 48(1):1-11. doi: 10.11698/PED.2021.01.01
    [34] 杨明澔, 李小波, 刘兴邦, 等. 人工智能大模型在油气勘探开发领域的应用及挑战[J]. 石油科技论坛,2024,43(6):107-113,125. doi: 10.3969/j.issn.1002-302X.2024.06.013

    YANG Minghao, LI Xiaobo, LIU Xingbang, et al. Application of artificial intelligence pretrained foundation models in exploration and development and challenges in this area[J]. Oil Forum, 2024, 43(6):107-113,125. doi: 10.3969/j.issn.1002-302X.2024.06.013
    [35] 段鸿杰, 马承杰, 王振, 等. 胜利油田油气认知大模型建设与应用[J]. 石油科技论坛,2024,43(6):46-55. doi: 10.3969/j.issn.1002-302X.2024.06.006

    DUAN Hongjie, MA Chengjie, WANG Zhen, et al. Large language model of oil and gas cognition constructed and applied in Shengli oilfield[J]. Oil Forum, 2024, 43(6):46-55. doi: 10.3969/j.issn.1002-302X.2024.06.006
    [36] 石玉江, 周军, 李雄伟, 等. 测井人工智能应用场景及实现[J]. 石油科技论坛,2024,43(6):28-37. doi: 10.3969/j.issn.1002-302X.2024.06.004

    SHI Yujiang, ZHOU Jun, LI Xiongwei, et al. Scenario and realization of logging artificial intelligence application[J]. Oil Forum, 2024, 43(6):28-37. doi: 10.3969/j.issn.1002-302X.2024.06.004
    [37] 国家能源局. 2024年全国油气勘探开发十大标志性成果[DB/OL]. (2025-01-20)[2025-02-18]. https://www.doc88.com/p-88068478021009.html.
    [38] 山东省工业和信息化厅. 国家级工业互联网平台巡礼(第三期) 工业为海云作帆!胜软云帆赋能工业企业“智改数转”提速升级[DB/OL]. (2025-01-02)[2025-02-18]. http://gxt.shandong.gov.cn/art/2025/1/2/art_349340_10347752.html.
    [39] 李根生, 宋先知, 祝兆鹏, 等. 智能钻完井技术研究进展与前景展望[J]. 石油钻探技术,2023,51(4):35-47. doi: 10.11911/syztjs.2023040

    LI Gensheng, SONG Xianzhi, ZHU Zhaopeng, et al. Research progress and the prospect of intelligent drilling and completion technologies[J]. Petroleum Drilling Techniques, 2023, 51(4):35-47. doi: 10.11911/syztjs.2023040
    [40] 王志刚, 王稳石, 张立烨, 等. 万米科学超深井钻完井现状与展望[J]. 科技导报,2022,40(13):27-35.

    WANG Zhigang, WANG Wenshi, ZHANG Liye, et al. Present situation and prospect of drilling and completion of 10000 meter scientific ultra deep wells[J]. Science & Technology Review, 2022, 40(13):27-35.
    [41] 赵金海, 张洪宁, 王恒, 等. 中国石化超深层钻完井关键技术挑战及展望[J]. 钻采工艺,2024,47(2):28-34. doi: 10.3969/J.ISSN.1006-768X.2024.02.04

    ZHAO Jinhai, ZHANG Hongning, WANG Heng, et al. Key technical challenges and prospects of drilling and completion in ultra-deep reservoirs, sinopec[J]. Drilling & Production Technology, 2024, 47(2):28-34. doi: 10.3969/J.ISSN.1006-768X.2024.02.04
    [42] 程诗蕾, 程国建. 基于YOLOv8的井场设施安全实时监测新算法[J]. 石油工业技术监督,2024,40(9):45-50.

    CHENG Shilei, CHENG Guojian. A new Real-Time monitoring algorithm for safety of wellsite facilities based on YOLOv8[J]. Technology Supervision in Petroleum Industry, 2024, 40(9):45-50.
    [43] 孙亚招, 王景浩, 李宗祥. 基于改进YOLOv7算法的井场作业安全检测方法研究[J]. 石油工业技术监督,2024,40(5):43-47,70.

    SUN Yazhao, WANG Jinghao, LI Zongxiang. Research on safety detection method of well site operation based on improved YOLOv7 algorithm[J]. Technology Supervision in Petroleum Industry, 2024, 40(5):43-47,70.
    [44] 刘慧舟, 胡瑾秋, 张来斌, 等. 基于红外热成像与CNN的压裂装备故障精准识别及预警[J]. 中国石油大学学报(自然科学版),2021,45(1):158-166.

    LIU Huizhou, HU Jinqiu, ZHANG Laibin, et al. Accurate identification and early-warning of faults of fracturing equipments based on infrared thermal imaging and convolutional neural network[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(1):158-166.
    [45] 胡瑾秋, 张立强, 张来斌. 石油化工装置长周期运行风险超早期精确预警方法[J]. 石油学报(石油加工),2019,35(3):527-533.

    HU Jinqiu, ZHANG Liqiang, ZHANG Laibin. Precise Risk-Ultra-Early-Warning method for long period running petrochemical devices[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2019, 35(3):527-533.
    [46] HU J Q, CHEN C A, LIU Z Y. Early warning method for overseas natural gas pipeline accidents based on FDOOBN under severe environmental conditions[J]. Process Safety and Environmental Protection, 2022, 157:175-192. doi: 10.1016/j.psep.2021.10.046
    [47] 胡瑾秋, 崔靖直, 胡洋柏, 等. 井场智能化建设安全保障技术研究进展与发展趋势[J]. 工业安全与环保,2024,50(12):69-73. doi: 10.3969/j.issn.1001-425X.2024.12.012

    HU Jinqiu, CUI Jingzhi, HU Yangbai, et al. Research progress and development trends of safety guarantee technology for well field intelligent construction[J]. Industrial Safety and Environmental Protection, 2024, 50(12):69-73. doi: 10.3969/j.issn.1001-425X.2024.12.012
    [48] 罗晓容, 杨海军, 王震亮, 等. 深层—超深层碎屑岩储层非均质性特征与油气成藏模式[J]. 地质学报,2023,97(9):2802-2819.

    LUO Xiaorong, YANG Haijun, WANG Zhenliang, et al. Heterogeneity characteristics of clastic reservoirs and hydrocarbon accumulation mode in deep-ultradeep basins[J]. Acta Geologica Sinica, 2023, 97(9):2802-2819.
    [49] 尚墨翰, 赵向原, 曾大乾, 等. 深层海相碳酸盐岩储层非均质性研究进展[J]. 油气地质与采收率,2021,28(5):32-49.

    SHANG Mohan, ZHAO Xiangyuan, ZENG Daqian, et al. Research progress on heterogeneity of deep marine carbonate reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(5):32-49.
    [50] 陈宏志, 宫本儒, 王笑妍, 等. 预训练大模型在油气领域的价值场景、挑战及未来方向[J]. 现代信息科技,2024,8(13):129-135.

    CHEN Hongzhi, GONG Benru, WANG Xiaoyan, et al. Value scenarios and challenges and future directions of pre-trained AI big model in the oil and gas field[J]. Modern Informationn Technology, 2024, 8(13):129-135.
  • 加载中
图(6)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  22
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-05
  • 修回日期:  2025-02-20
  • 刊出日期:  2025-04-17

目录

    /

    返回文章
    返回