Research Progress in Preparation of Nanocellulose and Its Application in Drilling Fluids
-
摘要: 纤维素作为常用钻井液添加剂被广泛应用于多种水基钻井液体系中,可以有效降低钻井液失水、增强携带岩屑性能、改善钻井液流变性;纳米纤维素作为新型钻井液添加剂既具有常规纤维素的优点,又具有抗温、抗盐碱等性能,可以显著改善钻井液的稳定性能和流变性能,有效降低钻井液的滤失量。介绍了目前制备纳米纤维素的方法以及纳米纤维素在钻井液中的应用,并对纳米纤维素在钻井液中的应用作了展望,旨为制备新型抗高温环保型钻井液处理剂提供参考。Abstract: Celluloses are a common additive used in various water-based drilling fluids to effectively reduce the filtration rate, enhance the drilled solids suspending capacity and improve the rheology of the drilling fluids. Nanocellulose as an innovative drilling fluid additive has, apart from the advantages of the common cellulose, new properties such as high temperature stability and resistance to salt and alkali contamination. The nanocellulose also remarkably improve the stability and rheology, and effectively reduce the filtration rate of the drilling fluids. This paper introduces the methods presently used to produce nanocellulose and the application of nanocellulose in drilling fluids. Prospects are made in the paper of the application of the nanocellulose in drilling fluids, aiming at providing a reference for producing new environmentally-friendly high temperature drilling fluid additives.
-
Key words:
- Nanocellulose /
- Produce /
- Drilling fluid /
- Application /
- Summarize
-
图 1 CNF、CNC和BC的微观形态结构[7]
图 2 无HNP钻井液与5 lb/bbl HNP钻井液不同条件下滤失量[44]
注:1(lb/bbl)=2.853 kg/cm3
图 3 不同老化温度下4 % NaCl水基钻井液的滤失量[48]
图 4 老化前后添加不同羧基化CNC含量钻井液滤失量[50]
图 5 样品在膨润土表面的等温吸附曲线[50]
-
[1] 袁玥辉, 屈沅治, 高世峰, 等. 抗温抗盐水基钻井液降滤失剂研究进展[J]. 新疆石油天然气,2023,19(2):62-68. doi: 10.12388/j.issn.1673-2677.2023.02.008YUAN Yuehui, QU Yuanzhi, GAO Shifeng, et al. Advances in study on temperature-resistant and salt-tolerant fluid loss reducers for water-based drilling fluids[J]. Xinjiang Oil & Gas, 2023, 19(2):62-68. doi: 10.12388/j.issn.1673-2677.2023.02.008 [2] HALL L J, DEVILLE J P, SANTOS C M, et al. Nanocellulose and biopolymer blends for high-performance water-based drilling fluids[C]//The IADC/SPE Drilling Conference and Exhibition. Fort Worth, Texas, USA: SPE, 2018: SPE-189577-MS. [3] HALL L J, DEVILLE J P, ARAUJO C S, et al. Nanocellulose and its derivatives for high-performance water-based fluids[C]//SPE International Conference on Oilfield Chemistry. Montgomery, Texas, USA: SPE, 2017: SPE-184576-MS. [4] 许凯瑞, 宫庆华, 周国伟. 纳米纤维素的分类制备及其在电化学应用中的研究进展[J]. 高分子通报,2020(10):12-20.XU Kairui, GONG Qinghua, ZHOU Guowei. Progress on preparation of nanocelluloses and its applications in electrochemistry[J]. Chinese Polymer Bulletin, 2020(10):12-20. [5] AHVAZI B, DANUMAH C, NGO T D, et al. The impact of fiber oxidation on the preparation of cellulose nanocrystals(CNC)[J]. Biomass, 2022, 2(4):316-333. doi: 10.3390/biomass2040021 [6] ZHANG Y X, NYPELÖ T, SALAS C, et al. Cellulose nanofibrils: from strong materials to bioactive surfaces[J]. Journal of Renewable Materials, 2013, 1(3):195-211. doi: 10.7569/JRM.2013.634115 [7] DENG W F, ZHANG Y D, WU M Y, et al. Cost-effective preparation of highly amorphous cellulose nanofibrils with TEMPO oxidation promoted by mild molten salt hydrate pretreatment[J]. Industrial Crops and Products, 2023, 205:117455. doi: 10.1016/j.indcrop.2023.117455 [8] 王增义. 稻草纤维素纳米纤维及其复合材料薄膜的制备与性能研究[D]. 上海: 上海交通大学, 2019.WANG Zengyi. Preparation and properties of straw cellulose nanofibers and their composite films[D]. Shanghai: Shanghai Jiao Tong University, 2019. [9] RYLAND B L, STAHL S S. Practical aerobic oxidations of alcohols and amines with homogeneous Copper/TEMPO and related catalyst systems[J]. Angewandte Chemie (International ed. in English), 2014, 53(34):8824-8838. doi: 10.1002/anie.201403110 [10] GANDINI A, LACERDA T M, CARVALHO A J F, et al. Progress of polymers from renewable resources: furans, vegetable oils, and polysaccharides[J]. Chemical Reviews, 2016, 116(3):1637-1669. doi: 10.1021/acs.chemrev.5b00264 [11] DE NOOY A E J. BESEMER A C, VAN BEKKUM H. Highly selective nitrosyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans[J]. Carbohydrate Research, 1995, 269(1):89-98. doi: 10.1016/0008-6215(94)00343-E [12] HABIBI Y, CHANZY H, VIGNON M R. TEMPO-mediated surface oxidation of cellulose whiskers[J]. Cellulose, 2006, 13(6):679-687. doi: 10.1007/s10570-006-9075-y [13] PUANGSIN B, YANG Q L, SAITO T, et al. Comparative characterization of TEMPO-oxidized cellulose nanofibril films prepared from non-wood resources[J]. International Journal of Biological Macromolecules, 2013, 59:208-213. doi: 10.1016/j.ijbiomac.2013.04.016 [14] WANG J, LIU X, JIN T, et al. Preparation of nanocellulose and its potential in reinforced composites: a review[J]. Journal of Biomaterials Science Polymer Edition, 2019, 30(11):919-946. doi: 10.1080/09205063.2019.1612726 [15] SAEMAN J F. Kinetics of wood saccharification-hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature[J]. Industrial & Engineering Chemistry, 1945, 37(1):43-52. [16] 庄新姝, 王树荣, 骆仲泱, 等. 纤维素低浓度酸水解试验及产物分析研究[J]. 太阳能学报,2006,27(5):519-524. doi: 10.3321/j.issn:0254-0096.2006.05.020ZHUANG Xinshu, WANG Shurong, LUO Zhongyang, et al. Experimental research and products analysis of cellulose hydrolysis under extremely low acids[J]. Acta Energiae Solaris Sinica, 2006, 27(5):519-524. doi: 10.3321/j.issn:0254-0096.2006.05.020 [17] 马海珠, 周天文, 薛国新, 等. 超低浓度酸水解制备纤维素纳米纤丝的初步研究[J]. 中国造纸,2020,39(1):17-25. doi: 10.11980/j.issn.0254-508X.2020.01.003MA Haizhu, ZHOU Tianwen, XUE Guoxin, et al. Preparation of cellulose nanofibrils by ultra-low acid hydrolysis[J]. China Pulp & Paper, 2020, 39(1):17-25. doi: 10.11980/j.issn.0254-508X.2020.01.003 [18] 张燕, 左盼盼, 王超君, 等. 纳米纤维素的最新制备研究Ⅱ. 机械法[J]. 纤维素科学与技术,2020,28(4):56-62.ZHANG Yan, ZUO Panpan, WANG Chaojun, et al. Recent preparation research of Nano-CelluloseⅡ. mechanical method[J]. Journal of Cellulose Science and Technology, 2020, 28(4):56-62. [19] HETTRICH K, PINNOW M, VOLKERT B, et al. Novel aspects of nanocellulose[J]. Cellulose, 2014, 21(4):2479-2488. doi: 10.1007/s10570-014-0265-8 [20] JIANG F, HSIEH Y L. Chemically and mechanically isolated nanocellulose and their self-assembled structures[J]. Carbohydrate Polymers, 2013, 95(1):32-40. doi: 10.1016/j.carbpol.2013.02.022 [21] BASU A, HEITZ K, STRØMME M, et al. Ion-crosslinked wood-derived nanocellulose hydrogels with tunable antibacterial properties: candidate materials for advanced wound care applications[J]. Carbohydrate Polymers, 2018, 181:345-350. doi: 10.1016/j.carbpol.2017.10.085 [22] 王宝霞. 花生壳纤维素纳米纤丝及其复合材料的制备与性能研究[D]. 南京: 南京林业大学, 2018.WANG Baoxia. Preparation and properties of peanut shell cellulose nanofibrils and their composites[D]. Nanjing: Nanjing Forestry University, 2018. [23] 张燕, 张铭涛, 沈晓飞, 等. 纳米纤维素的最新制备进展Ⅰ. 化学法[J]. 纤维素科学与技术,2020,28(3):49-58.ZHANG Yan, ZHANG Mingtao, SHEN Xiaofei, et al. Recent progress of preparation of nano-cellulose Ⅰ. the chemical methods[J]. Journal of Cellulose Science and Technology, 2020, 28(3):49-58. [24] MANDAL A, CHAKRABARTY D. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization[J]. Carbohydrate Polymers, 2011, 86(3):1291-1299. doi: 10.1016/j.carbpol.2011.06.030 [25] 赵鑫, 张红, 门中华, 等. 纤维素酶的研究与应用进展[J]. 化学与生物工程,2023,40(9):1-9. doi: 10.3969/j.issn.1672-5425.2023.09.001ZHAO Xin, ZHANG Hong, MEN Zhonghua, et al. Research and application progress in cellulase[J]. Chemistry & Bioengineering, 2023, 40(9):1-9. doi: 10.3969/j.issn.1672-5425.2023.09.001 [26] 曹媛. 纳米纤维素酶法制备及酶系优化的研究[D]. 济南: 山东大学, 2018.CAO Yuan. Title: Study on enzymatie preparaton of nanccellulose and optimization of enzymatic system [D]. Jinan: Shandong University, 2018. [27] JUÁREZ-LUNA G N, FAVELA-TORRES E, QUEVEDO I R, et al. Enzymatically assisted isolation of high-quality cellulose nanoparticles from water hyacinth stems[J]. Carbohydrate Polymers, 2019, 220:110-117. doi: 10.1016/j.carbpol.2019.05.058 [28] 李兆乾, 裴重华, 彭碧辉. 细菌纤维素的研究现状及进展[J]. 纤维素科学与技术,2007,15(2):64-68. doi: 10.3969/j.issn.1004-8405.2007.02.014LI Zhaoqian, PEI Chonghua, PENG Bihui. Current situation and development for bacterial cellulose[J]. Journal of Cellulose Science and Technology, 2007, 15(2):64-68. doi: 10.3969/j.issn.1004-8405.2007.02.014 [29] 孙振炳, 李晓宝, 姚曜, 等. 细菌纤维素抗菌复合材料的制备和应用[J]. 包装工程,2021,42(13):21-28.SUN Zhenbing, LI Xiaobao, YAO Yao, et al. Preparation and application of bacterial cellulose antibacterial composite material[J]. Packaging Engineering, 2021, 42(13):21-28. [30] 周毓, 刘艳. 细菌纤维素研究进展[J]. 广州化工,2007,35(2):8-9. doi: 10.3969/j.issn.1001-9677.2007.02.005ZHOU Yu, LIU Yan. Advance in bacterial cellulose[J]. Guangzhou Chemical Industry, 2007, 35(2):8-9. doi: 10.3969/j.issn.1001-9677.2007.02.005 [31] GATENHOLM P, KLEMM D. Bacterial nanocellulose as a renewable material for biomedical applications[J]. MRS Bulletin, 2010, 35(3):208-213. doi: 10.1557/mrs2010.653 [32] TAOKAEW S, SEETABHAWANG S, SIRIPONG P, et al. Biosynthesis and characterization of nanocellulose-gelatin films[J]. Materials, 2013, 6(3):782-794. doi: 10.3390/ma6030782 [33] GUO D L, YUAN T Z, SUN Q Y, et al. Cellulose nanofibrils as rheology modifier and fluid loss additive in water-based drilling fluids: rheological properties, rheological modeling, and filtration mechanisms[J]. Industrial Crops and Products, 2023, 193:116253. doi: 10.1016/j.indcrop.2023.116253 [34] VILLADA Y, IGLESIAS M C, CASIS N, et al. Cellulose nanofibrils as a replacement for xanthan gum(XGD) in water based muds(WBMs) to be used in shale formations[J]. Cellulose, 2018, 25(12):7091-7112. doi: 10.1007/s10570-018-2081-z [35] LIU C Z, LI M C, MEI C T, et al. Cellulose nanofibers from rapidly microwave-delignified energy cane bagasse and their application in drilling fluids as rheology and filtration modifiers[J]. Industrial Crops and Products, 2020, 150:112378. doi: 10.1016/j.indcrop.2020.112378 [36] SONG K L, WU Q L, LI M C, et al. Water-based bentonite drilling fluids modified by novel biopolymer for minimizing fluid loss and formation damage[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2016, 507:58-66. [37] HEGGSET E B, CHINGA-CARRASCO G, SYVERUD K. Temperature stability of nanocellulose dispersions[J]. Carbohydrate Polymers, 2017, 157:114-121. doi: 10.1016/j.carbpol.2016.09.077 [38] LI M C, REN S X, ZHANG X Q, et al. Surface-chemistry-tuned cellulose nanocrystals in a bentonite suspension for water-based drilling fluids[J]. ACS Applied Nano Materials, 2018, 1(12):7039-7051. doi: 10.1021/acsanm.8b01830 [39] DEVILLE J P, RADY A, ZHOU H. Nanocellulose as a new degradable suspension additive for high-density calcium brines[C]//SPE International Conference and Exhibition on Formation Damage Control. Lafayette, Louisiana, USA: SPE, 2020: SPE-199318-MS. [40] IBRAHIM K, NZEREM P, SALIHU A, et al. Performance evaluation of nanocellulose synthesised from yam peels as a fluid loss additive in water based mud[C]//SPE Nigeria Annual International Conference and Exhibition. Lagos, Nigeria: SPE, 2023: SPE-217162-MS. [41] 程晓燕. 聚阴离子纤维素与纳米纤维素的协同降滤失效果研究[D]. 北京: 北京理工大学, 2018.CHENG Xiaoyan. Study on the synergistic fluid loss reduction effect of polyanionic cellulose and nanocellulose[D]. Beijing: Beijing Institute of Technology, 2018. [42] 侯式禄. 适用于高性能水基钻井液的纳米纤维素和生物聚合物研究[J]. 当代化工,2023,52(2):267-272. doi: 10.3969/j.issn.1671-0460.2023.02.004HOU Shilu. Studyon nanocellulose and biopolymers for high performance water-based drilling fluids[J]. Contemporary Chemical Industry, 2023, 52(2):267-272. doi: 10.3969/j.issn.1671-0460.2023.02.004 [43] DEVILLE J P, MAY P A, MILLER J J. Nanoparticle fluid loss control additive enables zero-spurt loss in high performance water-based drilling fluids[C]//IADC/SPE International Drilling Conference and Exhibition. Galveston, Texas, USA: SPE, 2022: SPE-208695-MS. [44] LI M C, WU Q, SONG K, et al. Cellulose nanocrystals and polyanionic cellulose as additives in bentonite Water-Based drilling fluids: rheological modeling and filtration mechanisms[J]. Industrial & Engineering Chemistry Research, 2016, 55(1):133-143. [45] 张道明. 纳米纤维素的研制及其在钻井液中的应用研究[D]. 青岛: 中国石油大学(华东), 2017.ZHANG Daoming. Development and application research of nanocellulose Used in drillingfluid[D]. Qingdao: China University of Petroleum(East China), 2017. [46] SABOORI R, SABBAGHI S, KALANTARIASL A, et al. Improvement in filtration properties of water-based drilling fluid by nanocarboxymethyl cellulose/polystyrene core-shell nanocomposite[J]. Journal of Petroleum Exploration and Production Technology, 2018, 8(2):445-454. doi: 10.1007/s13202-018-0432-9 [47] LIU X L, QU J L, WANG A, et al. Hydrogels prepared from cellulose nanofibrils via ferric ion-mediated crosslinking reaction for protecting drilling fluid[J]. Carbohydrate Polymers, 2019, 212:67-74. doi: 10.1016/j.carbpol.2019.02.036 [48] HALL L J, DEVILLE J P, SANTOS C M, et al. Nanocellulose and biopolymer blends for high-performance water-based drilling fluids[C]//IADC/SPE Drilling Conference and Exhibition. Fort Worth, Texas, USA: SPE, 2018: SPE-189577-MS. [49] LI X, WANG K, XIAN L. et al. Carboxylated cellulose nanocrystals as environmental-friendly and multi-functional additives for bentonite water-based drilling fluids under high-temperature conditions[J]. Cellulose, 2021, 29:6659-6675. [50] 王伟吉. 抗温环保纳米纤维素降滤失剂的研制及特性[J]. 钻井液与完井液,2020,37(4):421-426. doi: 10.3969/j.issn.1001-5620.2020.04.003WANG Weiji. Development and characteristics of a high temperature environmentally friendly nanocellulose filter loss reducer[J]. Drilling Fluid & Completion Fluid, 2020, 37(4):421-426. doi: 10.3969/j.issn.1001-5620.2020.04.003 -