Progress in Studying on Improving Mechanical Property of Set Cement in Well Cementing
-
摘要:
水泥石良好的力学性能对保证水泥环密封完整性具有重要意义。近年来,随着非常规油气资源日益成为油田增产稳产的主力,随着储气库开发和建设的不断深入,固井水泥石需要更好的力学性能才能满足复杂油气井密封完整性的需求。针对国内外改善水泥石力学性能的研究现状开展了调研,系统性阐述了当前改善固井水泥石力学性能的方法、材料及生效机理,着重介绍了超高性能混凝土对改善油井水泥力学性能的启发,以及纳米纤维、纳米管和晶须等材料的最新研究进展,为今后提升油井水泥石力学性能研究提供借鉴。
Abstract:Good mechanical properties of a set cement are of significance to the sealing integrity of the cement sheath. In recent years, with unconventional oil and gas resources becoming the main contributor to the production of oil and gas, and with more gas storage facilities being developed and constructed, set cement in well cementing with better mechanical properties is required to satisfy the needs of sealing integrity in complex oil and gas wells. In this paper, the investigation and survey done on set cement mechanical property improvement both at home and abroad are described, the methods and materials, as well as the mechanisms for the methods and the materials to work in improving the mechanical properties of set cement are systematically elaborated, the way in which the ultra-high performance concreate improves the mechanical properties of the oil well cement is introduced with emphasis, and the newest progresses made in the study of nanofibers, nanotubes and whiskers are expounded. The information and the thoughts of this article will hopefully be helpful in future studying on the improvement the mechanical properties of oil well set cement.
-
图 1 聚焦离子束铣削出的C—S—H凝胶圆柱[14]
图 2 C—S—H凝胶微柱的损坏情况[14]
图 3 4种熟料在不同水化时间的强度[8]
图 5 碳纳米管的SEM照片[57]
注:(a)为原始CNT;(b)~(d)为亚硝酸分别氧化30 min,90 min和120 min的CNT。
图 6 CNC的制取过程和结构示意图[60]
图 7 CNF的制取过程和结构示意图[60]
图 8 纳米纤维素的电镜照片[68]
注:(a)SEM;(b)TEM照片;(c)高分辨率TEM照片。
图 9 含ERM微球的水泥石SEM图[80]
图 10 硫酸钙晶须的电镜照片和改性后的硫酸钙晶须电镜照片[84]
表 1 文献[22]中熟料矿物组成设计
样品 熟料组分/% C3S C2S C3A C4AF A1 62.51 13.80 2.99 13.45 A2 61.78 14.92 3.08 15.12 A3 60.12 14.97 2.24 16.07 A4 59.57 15.56 1.50 16.89 A5 58.29 16.41 1.47 17.86 A6 58.79 17.92 1.19 19.14 A7 57.79 12.54 1.13 21.49 -
[1] YANG H, BU Y, JING S, et al. Failure mechanism of integrity of cement sheath under the coupling effect of formation creep and temperature during the operation of salt rock gas storage[J]. Energies, 2023, 16:7089. doi: 10.3390/en16207089 [2] ZHANG H X, LIU H J, ZHENG R C, et al. Application of ABAQUS flow-solid coupling model to evaluate sealing capability of sandstone formation interface based on the cracking behavior of cohesive force units[J]. Construction and Building Materials, 2023, 409:133863. doi: 10.1016/j.conbuildmat.2023.133863 [3] TIAN L, BU Y, LIU H, et al. Effects of the mechanical properties of a cement sheath and formation on the sealing integrity of the cement-formation interface in shallow water flow in deep water[J]. Construction and Building Materials, 2023, 369:130496. doi: 10.1016/j.conbuildmat.2023.130496 [4] 李国欣, 雷征东, 董伟宏, 等. 中国石油非常规油气开发进展、挑战与展望[J]. 中国石油勘探,2022,27(1):1-11.LI Guoxin, LEI Zhengdong, DONG Weihong, et al. Progress, challenges and prospects of unconventional oil and gas development of CNPC[J]. China Petroleum Exploration, 2022, 27(1):1-11. [5] 郭建春, 任文希, 曾凡辉, 等. 非常规油气井压裂参数智能优化研究进展与发展展望[J]. 石油钻探技术,2023,51(5):1-7.GUO Jianchun, REN Wenxi, ZENG Fanhui, et al. Unconventional oil and gas well fracturing parameter intelligent optimization: research progress and future development prospects[J]. Petroleum Drilling Techniques, 2023, 51(5):1-7. [6] 刘金璐,李军,李辉,等. 控压固井注入阶段井筒压力预测模型[J]. 钻井液与完井液,2024,41(2):231-238.LIU Jinlu, LI Jun, LI Hui, et al. A model for predicting wellbore pressure during the managed pressure cementing injection stage[J]. Drilling Fluid & Completion Fluid, 2024, 41(2):231-238. [7] 杨智程, 黄峰. 储气库固井水泥浆技术综述[J]. 化学工程与装备,2022,60(10):216-217,227.YANG Zhicheng, HUANG Feng. Overview of cementing slurry technology for gas storage[J]. Chemical Engineering& Equipment, 2022, 60(10):216-217,227. [8] 郭晓潞, 徐玲琳, 吴凯. 水泥基材料的结构与性能[M]. 北京: 中国建材工业出版社, 2020.GUO Xiaolu, XU Linglin, WU Kai. Structure and properties of cement-based materials[M]. Beijing: China Building Materials Industry Press, 2020. [9] 李军, 陈勉, 柳贡慧, 等. 套管、水泥环及井壁围岩组合体的弹塑性分析[J]. 石油学报,2005,26(6):99-103.LI Jun, CHEN Mian, LIU Gonghui, et al. Elastic-plastic analysis of casing-concrete sheath-rock combination[J]. Acta Petrolei Sinica, 2005, 26(6):99-103. [10] 卢亚锋, 唐庚, 刘殿富, 等. 深井超深井地层水泥环特性对套管载荷的影响[J]. 特种油气藏,2010,17(5):116-118.LU Yafeng, TANG Geng, LIU Dianfu, et al. Impacts of cement sheath on casing load in deep and ultra-deep wells[J]. Special Oil & Gas Reservoirs, 2010, 17(5):116-118. [11] 高孝巧, 吕建国, 吕健, 等. 水泥环弹性模量和厚度对套管外挤载荷影响的理论研[J]. 钻探工程,2013,40(3):17-20.GAO Xiaoqiao, LYU Jianguo, LYU Jian, et al. Theoretical study on effects of cement sheath elastic modulus and thickness on casing load[J]. Drilling Engineering, 2013, 40(3):17-20. [12] BU Y H, TIAN L J, GUO B L, et al. Experiment and simulation on the integrity of cement ring interface in deep water shallow formation[J]. Journal of Petroleum Science and Engineering, 2020, 190(1):107127. [13] 郭辛阳, 宋雨媛, 步玉环, 等. 基于损伤力学变内压条件下水泥环密封完整性模拟[J]. 石油学报,2020,41(11):1425-1433.GUO Xinyang, SONG Yuyuan, BU Yuhuan, et al. Simulation of seal integrity of cement sheath under variable internal casing pressure based on damage mechanics[J]. Acta Petrolei Sinica, 2020, 41(11):1425-1433. [14] SHAHRIN R, BOBKO C P. Micropillar compression investigation of size effect on microscale strength and failure mechanism of calcium-silicate-hydrates (C—S—H) in cement paste[J]. Cement and Concrete Research, 2019, 125:105863. doi: 10.1016/j.cemconres.2019.105863 [15] FAN D, YANG S, SAAFI M. Molecular dynamics simulation of mechanical properties of intercalated GO/C—S—H nanocomposites[J]. Computational Materials Science, 2021, 186:110012. doi: 10.1016/j.commatsci.2020.110012 [16] HOU D S, ZHANG W, CHEN Z, et al. A molecular dynamics study of silicene reinforced cement composite at different humidity: surface structure, bonding, and mechanical properties[J]. Construction and Building Materials, 2021, 291:123242. doi: 10.1016/j.conbuildmat.2021.123242 [17] HOU D S, ZHENG H P, WANG P, et al. Molecular dynamics study on sodium chloride solution transport through the calcium-silicate-hydrate nanocone channel[J]. Construction and Building Materials, 2022, 342, Part B: 128068. [18] YAN Y R, BERNARD E, MIRON G D, et al. Kinetics of Al uptake in synthetic calcium silicate hydrate (C—S—H)[J]. Cement and Concrete Research, 2023, 172:107250. doi: 10.1016/j.cemconres.2023.107250 [19] ZHANG G Y, WU Z Q, CHENG X W, et al. Mechanical properties of high-ferrite oil-well cement used in shale gas horizontal wells under various loads[J]. Construction and Building Materials, 2022, 319:126067. doi: 10.1016/j.conbuildmat.2021.126067 [20] ZHANG G Y, LONG D, XU W N, et al. Elucidating the mechanical property-enhancement mechanism of ferrite in oil-well cement using spherical ferrite[J]. Cement and Concrete Research, 2022, 161:106950. doi: 10.1016/j.cemconres.2022.106950 [21] SUN F, PANG X, WEI J, et al. Synthesis of alite, belite and ferrite in both monophase and polyphase states and their hydration behavior[J]. Journal of Materials Research and Technology, 2023, 25:3901-3916. doi: 10.1016/j.jmrt.2023.06.151 [22] 倪修成, 程小伟, 黎俊吾, 等. 新型油井水泥物相组成调控及力学性能研究[J]. 硅酸盐通报,2021,40(8):2534-2545.NI Xiucheng, CHENG Xiaowei, LI Junwu, et al. Phase composition control and mechanical property of new oil well cement[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(8):2534-2545. [23] LIU Q, LIU W J, LI Z J, et al. Ultra-lightweight cement composites with excellent flexural strength, thermal insulation and water resistance achieved by establishing interpenetrating network[J]. Construction and Building Materials, 2020, 250(1):118923. [24] FAN L D, XU F, WANG S R, et al. A review on the modification mechanism of polymer on cement-based materials[J]. Journal of Materials Research and Technology, 2023, 26:5816-5837. doi: 10.1016/j.jmrt.2023.08.291 [25] LIANG R, LIU Q, HOU D S, et al. Flexural strength enhancement of cement paste through monomer incorporation and in situ bond formation[J]. Cement and Concrete Research, 2022, 152:106675. doi: 10.1016/j.cemconres.2021.106675 [26] ZHOU W G, YE Q Q, CAO J F, et al. Performance improvement of magnesium oxychloride cement via nanoparticles-enhanced organic-inorganic hybrid network[J]. Construction and Building Materials, 2022, 343:128096. doi: 10.1016/j.conbuildmat.2022.128096 [27] LIU W T, SUN Y D, MENG X X, et al. Experimental analysis of Nano-SiO2 modified waterborne epoxy resin on the properties and microstructure of cement-based grouting materials[J]. Energy, 2023, 268:126669. doi: 10.1016/j.energy.2023.126669 [28] LU Z C, KONG X M, ZHANG Q, et al. Influences of styrene-acrylate latexes on cement hydration in oil well cement system at different temperatures[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2016, 507:46-57. [29] 祝国伟, 谢荣斌, 刘伟, 等. 阴离子型丁苯胶乳粉的合成及其在油井水泥中的应用[J]. 合成化学,2023,31(10):798-805.ZHU Guowei, XIE Rongbin, LIU Wei, et al. Synthesis of anionic styrene butadiene latex powder and its application in oil well cement[J]. Chinese Journal of Synthetic Chemistry, 2023, 31(10):798-805. [30] VITORINO F D C, DWECK J, FERRARA L, et al. Effect of plain and carboxylated styrene-butadiene rubber on the rheological behavior of silica fume-class G portland cement slurries[J]. Journal of Materials Research and Technology, 2020, 9(3):5364-5377. [31] 于林, 谭慧静, 任阳, 等. 三高条件对弹韧性水泥浆性能的影响及短期腐蚀机理[J]. 钻井液与完井液,2023,40(2):222-232.YU Lin, TAN Huijing, REN Yang, et al. Study on the influence of elastic toughness cement slurry performance and short-term corrosion mechanism under HPHTHS conditions[J]. Drilling Fluid & Completion Fluid, 2023, 40(2):222-232. [32] 郭雪利, 沈吉云, 武刚, 等. 韧性材料对页岩气压裂井水泥环界面完整性影响[J]. 表面技术,2022,51(12):232-242.GUO Xueli, SHEN Jiyun, WU Gang, et al. Influence of tough materials on cement sheath interface integrity for shale gas fracturing wells[J]. Surface Technology, 2022, 51(12):232-242. [33] 李斐. 抗高温弹韧性水泥浆体系优化研究[J]. 钻井液与完井液,2021,38(5):623-627.LI Fei. Study on optimization of high temperature cement slurry with elasticity and toughness[J]. Drilling Fluid & Completion Fluid, 2021, 38(5):623-627. [34] 张佳滢, 严俊涛, 周迎春, 等. 深层页岩气井高强度弹韧性水泥石力学性能研究[J]. 钻采工艺,2021,44(4):132-136.ZHANG Jiaying, YAN Juntao, ZHOU Yingchun, et al. Study on mechanical properties of high strength elastic-toughness cement for deep shale gas wells[J]. Drilling & Production Technology, 2021, 44(4):132-136. [35] 陈立超, 王生维, 张典坤. SCB试验测试固井水泥断裂力学性能[J]. 天然气工业,2021,41(9):105-113.CHEN Lichao, WANG Shengwei, ZHANG Diankun. SCB experimental study on fracture mechanical properties of cement[J]. Natural Gas Industry, 2021, 41(9):105-113. [36] 闫炎, 管志川, 阎卫军, 等. 水力压裂过程中水泥环裂缝扩展的数值模拟[J]. 科学技术与工程,2021,21(32):13673-13680.YAN Yan, GUAN Zhichuan, YAN Weijun, et al. Crack propagation simulation of perforated cement sheath during hydraulic fracturing[J]. Science Technology and Engineering, 2021, 21(32):13673-13680. [37] 黄柏宗. 紧密堆积理论的微观机理及模型设计[J]. 石油钻探技术,2007,35(1):5-12.HUANG Baizong. Microscopic mechanisms and model design of close packing theory[J]. Petroleum Drilling Techniques, 2007, 35(1):5-12. [38] 刘慧婷, 付家文, 丛谧, 等. 高强度低密度水泥石的微观结构和力学性能[J]. 硅酸盐通报,2020,39(11):3432-3437.LIU Huiting, FU Jiawen, CONG Mi, et al. Microstructure and mechanical properties of high strength low-density cement[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(11):3432-3437. [39] 郑少军, 谷怀蒙, 刘天乐, 等. 基于紧密堆积理论的深水低密度三元固相水泥浆体系[J]. 天然气工业,2024,44(2):122-131.ZHENG Shaojun, GU Huaimeng, LIU Tianle, et al. Deepwater low-density ternary solid phase cement slurry system based on close packing theory[J]. Natural Gas Industry, 2024, 44(2):122-131. [40] 中国混凝土与水泥制品协会超高性能水泥基材料与工程技术(CCPA-UHPC)分会. 2022年中国超高性能混凝土(UHPC)技术与应用发展报告(上)[J]. 混凝土世界,2023(7):19-27.China Concrete and Cement Products Association Ultra High Performance Cementitious Materials and Engineering Technology (CCPA-UHPC) Branch. 2022 China ultra-high performance concrete(UHPC)technology and application development report(part 1)[J]. China Concrete, 2023(7):19-27. [41] 中国混凝土与水泥制品协会超高性能水泥基材料与工程技术(CCPA-UHPC)分会. 2022年中国超高性能混凝土(UHPC)技术与应用发展报告(下)[J]. 混凝土世界,2023(8):18-23.China Concrete and Cement Products Association Ultra High Performance Cementitious Materials and Engineering Technology (CCPA-UHPC) Branch. 2022 China ultra-high performance concrete(UHPC)technology and application development report(part 2)[J]. China Concrete, 2023(8):18-23. [42] DONATELLO S, TYRER M, CHEESEMAN C R. Recent developments in macro-defect-free (MDF) cements[J]. Construction and Building Materials, 2009, 23(5):1761-1767. [43] TAHER H M A M, DAWOOD M B. Shear strengthening of continuous prestressed concrete beams with precast SIFCON laminates subjected to monotonic and repeated loads[J]. Materials Today: Proceedings, 2022, 60, Part 3: 2004-2009. [44] XU X F, CUI S, XU L I, et al. Effect of different fiber sizing on basalt fiber-reinforced cement-based materials at low temperature: from macro mechanical properties to microscopic mechanism[J]. Construction and Building Materials, 2023, 392:131773. [45] KIM M J, CHOI H J, SHIN W, et al. Development of impact resistant high-strength strain-hardening cementitious composites (HS-SHCC) superior to reactive powder concrete (RPC) under flexure[J]. Journal of Building Engineering, 2021, 44:102652. [46] YU J B, XIA Y F, GUO Z X, et al. Experimental study on the structural behavior of exterior precast concrete beam-column joints with high-strength steel bars in field-cast RPC[J]. Engineering Structures, 2024, 299:117128. [47] 耿春雷, 董阳, 左然芳, 等. 超高性能混凝土研究及工程应用现状[J]. 混凝土世界,2023(12):74-79.GENG Chunlei, DONG Yang, ZUO Ranfang, et al. Research and engineering application status of ultra-high performance concrete[J]. China Concrete, 2023(12):74-79. [48] 余睿, 范定强, 水中和, 等. 基于颗粒最紧密堆积理论的超高性能混凝土配合比设计[J]. 硅酸盐学报,2020,48(8):1145-1154.YU Rui, FAN Dingqiang, SHUI Zhonghe, et al. Mix design of ultra-high performance concrete based on particle densely packing theory[J]. Journal of the Chinese Ceramic Society, 2020, 48(8):1145-1154. [49] 温得成, 魏定邦, 吴来帝, 等. 基于MAA模型的UHPC基体配合比设计和特性分析[J]. 建筑材料学报,2022,25(7):693-699,743.WEN Decheng, WEI Dingbang, WU Laidi, et al. Research on mix design and characteristics of UHPC matrix mixture based on MAA model[J]. Journal of Building Materials, 2022, 25(7):693-699,743. [50] MOZAFFARI S, RAHMANI O, PIROOZIAN A, et al. Oil-well lightweight cement slurry for improving compressive strength and hydration rate in low-temperature conditions[J]. Construction and Building Materials, 2022, 357:129301. [51] GOYAL R, VERMA V K, SINGH N B. Hydration of portland slag cement in the presence of nano silica[J]. Construction and Building Materials, 2023, 394:132173. [52] RECHES Y, THOMSON K, HELBING M, et al. Agglomeration and reactivity of nanoparticles of SiO2, TiO2, Al2O3, Fe2O3, and clays in cement pastes and effects on compressive strength at ambient and elevated temperatures[J]. Construction and Building Materials, 2018, 167:860-873. [53] SAREMI A, FALL M. Strength and suction development of nano-cemented paste tailings materials[J]. Cleaner Materials, 2023, 8:100190. [54] 刘明贤, 周长忍, 贾德民. 埃洛石纳米管及其复合材料[M]. 北京: 科学出版社, 2019.LIU Mingxian, ZHOU Changren, JIA Demin. Halloysite nanotubes and its composites[M]. Beijing: Science Press, 2019. [55] LIU H T, JIN J Z, YU Y J, et al. Influence of halloysite nanotube on hydration products and mechanical properties of oil well cement slurries with nano-silica[J]. Construction and Building Materials, 2020, 247:118545. [56] YU T, ZHANG B F, GUO H Z, et al. Calcined nanosized tubular halloysite for the preparation of limestone calcined clay cement (LC3)[J]. Applied Clay Science, 2023, 232:106795. [57] LAVAGNA L, BARTOLI M, SUAREZ R D, et al. Oxidation of carbon nanotubes for improving the mechanical and electrical properties of oil-well cement-based composites[J]. ACS Applied Nano Materials, 2022, 5(5):6671-6678. [58] 王涛, 申峰, 展转盈, 等. 页岩气小井眼水平井纳米增韧水泥浆固井技术[J]. 石油钻探技术,2023,51(3):51-57.WANG Tao, SHEN Feng, ZHAN Zhuanying, et al. Ductile nano-cement slurry cementing for slim-hole horizontal shale gas wells[J]. Petroleum Drilling Techniques, 2023, 51(3):51-57. [59] SANTOS R F, RIBEIRO J C L, FRANCO DE CARVALHO J M, et al. Nanofibrillated cellulose and its applications in cement-based composites: a review[J]. Construction and Building Materials, 2021, 288:123122. [60] PHANTHONG P, REUBROYCHAROEN P, HAO X G, et al. Nanocellulose: extraction and application[J]. Carbon Resources Conversion, 2018, 1(1):32-43. [61] LAVOINE N, DESLOGES I, DUFRESNE A, et al. Microfibrillated cellulose-its barrier properties and applications in cellulosic materials: a review[J]. Carbohydrate Polymers, 2012, 90(2):735-764. [62] ROCHA FERREIRA S, UKRAINCZYK N, DEFÁVERI DO CARMO E SILVA K, et al. Effect of microcrystalline cellulose on geopolymer and portland cement pastes mechanical performance[J]. Construction and Building Materials, 2021, 288:123053. [63] NASSIRI S, CHEN Z, JIAN G Q, et al. Comparison of unique effects of two contrasting types of cellulose nanomaterials on setting time, rheology, and compressive strength of cement paste[J]. Cement and Concrete Composites, 2021, 123:104201. [64] HISSEINE O A, SOLIMAN N A, TOLNAI B, et al. Nano-engineered ultra-high performance concrete for controlled autogenous shrinkage using nanocellulose[J]. Cement and Concrete Research, 2020, 137:106217. [65] D'ERME C, CASERI W R, SANTARELLI M L. Effect of fibrillated cellulose on lime pastes and mortars[J]. Materials, 2022, 15(2):459. [66] LIU K, XU Y, WEN Z, et al. Preparation of cellulose nanofibrils and their effects on the rheological properties and compressive strength of oil-well cement paste[J]. Construction and Building Materials, 2023, 394:132313. [67] LIU K, YU J, CHEN Y, et al. Preparation of cellulose fiber-sheets and its impact on pore connectivity of cement paste during early hydration[J]. Construction and Building Materials, 2024, 411:134535. [68] XIAO Y, HUANG J, XU Y, et al. Hierarchical 1D nanofiber-2D nanosheet-shaped self-standing membranes for high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2018, 19:9161-9171. [69] 王涛, 侯云翌, 马振锋, 等. 粉煤灰-微硅-水泥三元复合低密度充填水泥浆在页岩油水平井的应用[J]. 硅酸盐通报,2022,41(4):1380-1387,1415.WANG Tao, HOU Yunyi, MA Zhenfeng, et al. Application of fly ash-micro silicon-cement ternary composite low density filling cement slurry in shale oil horizontal wells[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(4):1380-1387,1415. [70] 张荣华, 徐迅, 罗宏伟, 等. 活性粉末混凝土组成材料及制备方式研究综述[J]. 混凝土与水泥制品,2019(10):14-18.ZHANG Ronghua, XU Xun, LUO Hongwei, et al. Review of research on composition materials and preparation methods of reactive powder concrete[J]. China Concrete and Cement Products, 2019(10):14-18. [71] ONYENOKPORO N C, TAKI A, MONTALVO L Z, et al. Thermal performance characterization of cement-based masonry blocks incorporating rice husk ash[J]. Construction and Building Materials, 2023, 398:132481. [72] HU L, HE Z, ZHANG S. Sustainable use of rice husk ash in cement-based materials: environmental evaluation and performance improvement[J]. Journal of Cleaner Production, 2020, 264:121744. [73] 嵇鹰, 樊帅, 薛宇泽, 等. 玻璃微珠/珍珠岩/稻壳灰对固井水泥性能影响[J]. 非金属矿,2023,46(1):1-5.JI Ying, FAN Shuai, XUE Yuze, et al. Study on the effect of glass beads/expanded perlite/rice husk ash on the performance of oil well cement[J]. Non-Metallic Mines, 2023, 46(1):1-5. [74] 赵峰, 曾雪玲, 龙丹, 等. 硅灰石纤维增强页岩气固井水泥力学性能及影响研究[J]. 水泥,2024(3):1-6.ZHAO Feng, ZENG Xueling, LONG Dan, et al. Study on mechanical properties and influence of wollastonite fiber reinforced shale gas cementing cement[J]. Cement, 2024(3):1-6. [75] 杜银飞, 黄伟, 代明欣, 等. SiC对水泥基材料传热效率及力学性能的影响[J]. 中南大学学报(自然科学版),2023,54(5):1730-1738.DU Yinfei, HUANG Wei, DAI Mingxin, et al. Influence of SiC on heat transfer efficiency and mechanical properties of cement-based materials[J]. Journal of Central South University (Science and Technology), 2023, 54(5):1730-1738. [76] ZHAO J Q, HU M M, LIU W M, et al. Toughening effects of well-dispersed carboxylated styrene-butadiene latex powders on the properties of oil well cement[J]. Construction and Building Materials, 2022, 340:127768. [77] PANG B, JIA Y T, PANG S D, et al. The interpenetration polymer network in a cement paste-waterborne epoxy system[J]. Cement and Concrete Research, 2021, 139:106236. [78] 于斌, 王有伟, 马天龙, 等. 渗透固结型环氧树脂基油气井常温固泥材料[J]. 钻井液与完井液,2022,39(4):481-487.YU Bin, WANG Youwei, MA Tianlong, et al. Penetrating consolidating epoxy-based oil and gas well cementing additives for use at ambient temperature[J]. Drilling Fluid & Completion Fluid, 2022, 39(4):481-487. [79] TANG J H, LIU J P, YU C, et al. Influence of cationic polyurethane on mechanical properties of cement based materials and its hydration mechanism[J]. Construction and Building Materials, 2017, 137:494-504. [80] ZHANG X F, PENG Z G, FENG Q, et al. Study on reducing the brittleness of oil well cement by preparing nano-SiO2/epoxy resin composite elastic microspheres based on pickering emulsion[J]. Construction and Building Materials, 2024, 416:135143. [81] 王泽坤. 晶须材料技术与应用[M]. 上海: 上海交通大学出版社, 2022.WANG Zekun. Whisker material technology and application[M]. Shanghai: Shanghai Jiao Tong University Press, 2022. [82] 孙秋菊. 无机晶须填充改性聚合物的应用[M]. 北京: 科学出版社, 2012.SUN Qiuju. Application of inorganic whisker filled modified polymers[M]. Beijing: Science Press, 2012. [83] 李明, 刘萌, 杨元意, 等. 碳酸钙晶须与碳纤维混杂增强油井水泥石力学性能[J]. 石油勘探与开发,2015,42(1):94-100.LI Ming, LIU Meng, YANG Yuanyi, et al. Mechanical properties of oil well cement stone reinforced with hybrid fiber of calcium carbonate whisker and carbon fiber[J]. Petroleum Exploration and Development, 2015, 42(1):94-100. [84] 张博建, 彭志刚, 冯茜, 等. 含有改性CaSO4晶须的固井水泥石的力学性能[J]. 硅酸盐学报,2021,49(10):2286-2297.ZHANG Bojian, PENG Zhigang, FENG Qian, et al. Mechanical properties of cement stone with modified CaSO4 whisker[J]. Journal of the Chinese Ceramic Society, 2021, 49(10):2286-2297. [85] SHEN P L, LU J X, ZHANG Y Y, et al. Preparation aragonite whisker-rich materials by wet carbonation of cement: towards yielding micro-fiber reinforced cement and sequestrating CO2[J]. Cement and Concrete Research, 2022, 159:106891. [86] 李明, 刘萌, 杨雨佳, 等. 碳酸钙晶须改善固井水泥浆性能研究[J]. 硅酸盐通报,2014,33(12):3145-3150,3158.LI Ming, LIU Meng, YANG Yujia, et al. Calcium carbonate whisker improved the performance of oil and gas well cement[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(12):3145-3150,3158. [87] 陈晰, 桂红星, 陈涛, 等. 碳酸钙晶须补强天然橡胶的性能研究[J]. 橡胶工业,2013,60(1):25-28.CHEN Xi, GUI Hongxing, CHEN Tao, et al. Properties of calcium carbonate whisker reinforced NR composites[J]. China Rubber Industry, 2013, 60(1):25-28. [88] 宋梦凡, 高新刚, 周宗辉. 改性碳酸钙晶须对工程水泥基材料力学性能的影响研究[J]. 新型建筑材料,2023,50(4):145-150.SONG Mengfan, GAO Xingang, ZHOU Zonghui. Study on influence of modified calcium carbonate whisker on mechanical properties of engineered cementitious composites[J]. New Building Materials, 2023, 50(4):145-150. [89] PENG Z G, LI C H, FENG Q, et al. Research on surface modification of polypropylene fiber and its application evaluation in oil well cement[J]. Construction and Building Materials, 2024, 421:135728. [90] LIMA V N, SKADSEM H J, BELTRÁN-JIMÉNEZ K, et al. The effect of PVA microfiber reinforcement on the mechanical and rheological behavior of class G oil well cement pastes[J]. Construction and Building Materials, 2023, 391:131806. [91] 高显束, 余杨, 王晶, 等. 页岩气井固井用玻璃纤维水泥石力学性能及增韧机理研究[J]. 新世纪水泥导报,2022,28(3):19-23.GAO Xianshu, YU Yang, WANG Jing, et al. Study on mechanical properties and toughening mechanism of glass fiber cement for shale gas well cementing[J]. Cement Guide for New Epoch, 2022, 28(3):19-23. [92] PAIVA L C M, FERREIRA I M, MARTINELLI A E, et al. Milled basalt fiber reinforced portland slurries for oil well applications[J]. Journal of Petroleum Science and Engineering, 2019, 175:184-189. [93] 郝华中, 桑明, 张晔, 等. 耐碱玻璃纤维增韧水泥石力学性能及对水泥浆性能影响[J]. 钻采工艺,2020,43(5):134-138.HAO Huazhong, SANG Ming, ZHANG Ye, et al. Mechanical properties of alkali-resistant glass fiber toughened cement and its influence on cement slurry properties[J]. Drilling & Production Technology, 2020, 43(5):134-138. [94] 邢磊. 玄武岩纤维产业的发展综述[J]. 化学工业,2020,38(2):34-42.XING Lei. A review of basalt fiber industry[J]. Chemical Industry, 2020, 38(2):34-42. [95] ZHENG Y, SUN D, FENG Q, et al. Nano-SiO2 modified basalt fiber for enhancing mechanical properties of oil well cement[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2022, 648:128900. -