Preparation of Corrosion Inhibitor for Self-Diverting Acid and Mechanisms of Corrosion Inhibition
-
摘要: 转向酸广泛应用于碳酸盐岩储层酸化酸压,由于黏弹性表面活性剂分子结构特殊,常规缓蚀剂配伍性较差,且缓蚀效率大幅降低。采用1-氯甲基萘、4-乙基吡啶、氯化苄和2,3-环戊烯并吡啶合成了2种吡啶季铵盐缓蚀剂SI-1和SI-2。采用腐蚀仪、流变仪考察了SI-1和SI-2在转向酸中的缓蚀性能及其对转向酸黏度的影响;通过扫描电子显微镜、能谱仪、原子力显微镜和X射线光电子能谱等实验手段,从微观角度分析钢片腐蚀前后表面形貌和化学成分;采用分子动力学模拟方法对缓蚀剂SI-1和SI-2的缓蚀机理进行了探讨。结果表明:合成的2种吡啶季铵盐缓蚀剂在转向酸中的缓蚀性能良好,对转向酸黏度影响小,适用性强,成本低。其中缓蚀剂SI-2性能更优,1%加量下,90 ℃腐蚀速率为1.04 g/(m2·h),120 ℃腐蚀速率为7.43 g/(m2·h),VES残酸最终黏度可稳定在190 mPa·s以上,成本可降低20%。加入1%缓蚀剂后钢片表面均未出现明显腐蚀,Fe含量大幅上升,表面粗糙度大幅降低,其中添加缓蚀剂SI-2后,Fe含量从86%上升至94%,Ra从137 nm下降至84 nm。钢片表面均检测到C—N与Organic C=O(羰基),表明存在缓蚀剂吸附膜。分子动力学模拟显示缓蚀机理为:SI-2能隙小,吸附能大,缓蚀剂吸附到钢片表面后可形成致密吸附膜,隔绝腐蚀介质与钢片表面的接触,极大地抑制钢片腐蚀。SI-2在渤海油田和伊拉克米桑油田进行了现场应用,施工效果良好。Abstract: Self-diverting acids are widely used in the acidification and fracturing of carbonate reservoirs. Corrosion inhibitors, because of the special molecular structures of the viscoelastic surfactants, have poor compatibility with other additives and corrosion control efficiency that is quite low. In this study, two pyridine quaternary ammonium salt corrosion inhibitors, SI-1 and SI-2, are synthesized with 1-chloromethylnaphthalene, 4-ethylpyridine, benzyl chloride and 2,3-cyclopentenopyridine. The corrosion control performance and the effects on the viscosity of self-diverting acids of SI-1 and SI-2 were investigated using corrosion tester and rheometer. The morphology and chemical components of steel plates before and after corrosion by acids were analyzed from the microscopic perspective by means of SEM, EDS, atomic force microscope and X-ray photoelectron spectroscopy. The corrosion mechanisms of the two corrosion inhibitors were studied using molecular dynamics simulation. The results of researches show that SI-1 and SI-2 have good corrosion control performance in self-diverting acids, minor effects on the viscosity of the self-diverting acids and wide applicability, and is cost-efficient. Compared with SI-1, SI-2 has better performance. A self-diverting acid treated with 1% SI-2 has corrosion rate at 90 ℃ of 1.04 g/(m2∙h), corrosion rate at 120 ℃ of 7.43 g/(m2∙h), final viscosity of the VES residual acid stabilized at 190 mPa∙s or higher. The cost of treatment can be reduced by 20% with SI-2. After adding 1% corrosion inhibitor in the acid, the surfaces of the steel plates show no obvious corrosion, the Fe content increases greatly, and the surface roughness decreases significantly. With SI-2, the Fe content increases from 86% to 94%, and Ra decreases from 137 nm to 84 nm. In both cases C—N and organic C=O bonds are detected on the surfaces of the steel plates, indicating the existence of the adsorption membranes of the corrosion inhibitors. Molecular dynamics simulation shows the mechanisms of corrosion inhibition are as follows: SI-2 has small energy gaps and high adsorption energy. After being adsorbed on the surfaces of the steel plates, a dense adsorption membrane is produced, isolating the corrosion media and the surfaces of the steel plates, thereby remarkably inhibiting the corrosion process of the steel plates. SI-2 has been used in the Bohai Oilfield and the Missan Oilfield (Iraq) with excellent operation achievement.
-
表 1 N80钢片化学组成成分 (%)
C Si Mn P S Cr Mo Ni Fe 0.44 0.32 1.83 0.028 0.027 0.19 0.28 0.22 余量 表 2 腐蚀实验数据
缓蚀剂 90 ℃腐蚀速率/g/(m2·h) 120 ℃腐蚀速率/g/(m2·h) 空白 693.12 2012.36 SI-1 3.35 22.56 SI-2 1.04 7.43 表 3 试片表面元素含量测试结果
类型 元素含量/% Fe C O N 未腐蚀的N80钢片 94.42 6.59 0.97 0.48 未加缓蚀剂 86.24 5.12 2.45 0.53 添加1% SI-1 93.15 7.03 1.23 0.62 添加1% SI-2 94.16 6.81 1.09 0.60 表 4 各体系AFM微观形貌的表面粗糙度参数
类型 表面粗糙度参数 Ra Ah Rmax 未腐蚀的N80钢片 6 65 149 未加缓蚀剂 137 655 2457 添加1%SI-1 88 382 1375 添加1%SI-2 84 411 1306 表 5 N80钢片表面化合物的结合能实验数据与标准数据对比
原子价态 标准值/eV 1%SI-1
实验值/eV1%SI-2
实验值/eVFe2O3 FeCl2 C—N Fe2p 710.9 710.4 711.2、710.6 711.1、710.5 O1s 530.2 529.8 530.1 C1s 284 283.7 284.3 N1s 400 400.5 399.8 Cl2s 199 198.5 200.2 表 6 2种缓蚀剂分子的全局活性参数
参数 缓蚀剂 SI-1 SI-2 EHOMO −4.861 −4.497 ELOMO −2.032 −2.562 χ 3.447 3.530 η 1.415 0.968 μ −3.447 −3.530 σ 0.707 1.033 ∆N 1.255 1.792 ω 4.199 6.436 ∆E 2.869 1.935 -
[1] 马超, 赵林, 杨海, 等. 高温气井非均质碳酸盐储层自转向酸的研制与应用[J]. 油田化学,2020,37(4):604-608,615.MA Chao, ZHAO Lin, YANG Hai, et al. Development and application of self-steering acid in heterogeneous carbonate reservoir of high temperature gas well[J]. Oilfield Chemistry, 2020, 37(4):604-608,615. [2] 张潦源, 曲占庆, 王云川, 等. 芥酸酰胺丙基羟磺基甜菜碱自转向酸制备与性能研究[J]. 化学研究与应用,2020,32(11):2028-2033. doi: 10.3969/j.issn.1004-1656.2020.11.013ZHANG Liaoyuan, QU Zhanqing, WANG Yunchuan, et al. Preparation and properties of erucylamidopropyl hydroxy sulfobetaine-based self-diverting acid[J]. Chemical Research and Application, 2020, 32(11):2028-2033. doi: 10.3969/j.issn.1004-1656.2020.11.013 [3] 荣新明, 张博, 张强, 等. 甜菜碱类酸化自转向剂的性能评价[J]. 应用化工,2020,49(11):2693-2695,2700. doi: 10.3969/j.issn.1671-3206.2020.11.005RONG Xinming, ZHANG Bo, ZHANG Qiang, et al. Evaluation of betaine-based acidic self-diverting agent[J]. Applied Chemical Industry, 2020, 49(11):2693-2695,2700. doi: 10.3969/j.issn.1671-3206.2020.11.005 [4] 毛金成, 王晨, 张恒, 等. 阳离子VES转向酸体系的研制及性能评价[J]. 石油与天然气化工,2019,48(6):65-69. doi: 10.3969/j.issn.1007-3426.2019.06.013MAO Jincheng, WANG Chen, ZHANG Heng, et al. Development and performance evaluation of cationic VES diverting acid system[J]. Chemical Engineering of Oil and Gas, 2019, 48(6):65-69. doi: 10.3969/j.issn.1007-3426.2019.06.013 [5] 王云云, 杨彬, 张镇, 等. 自转向酸用缓蚀剂的研究与应用[J]. 钻井液与完井液,2017,34(5):96-99. doi: 10.3969/j.issn.1001-5620.2017.05.018WANG Yunyun, YANG Bin, ZHANG Zhen, et al. Study and application of a corrosion inhibitor used in self-diverting acid[J]. Drilling Fluid & Completion Fluid, 2017, 34(5):96-99. doi: 10.3969/j.issn.1001-5620.2017.05.018 [6] 刘倍贝, 周福建, 胡大鹏. 黏弹性表面活性剂转向酸缓蚀剂研究进展[J]. 石油与天然气化工,2015,44(5):86-89. doi: 10.3969/j.issn.1007-3426.2015.05.018LIU Beibei, ZHOU Fujian, HU Dapeng. Research progress of corrosion inhibitor for viscoelastic surfactant-based self-diverting acid[J]. Chemical Engineering of Oil and Gas, 2015, 44(5):86-89. doi: 10.3969/j.issn.1007-3426.2015.05.018 [7] 蔡远红, 罗炽臻. 表面活性酸黏度影响因素及缓蚀控制[J]. 钻采工艺,2010,33(z1):146-150.CAI Yuanhong, LUO Chizhen. Factors affecting viscosity of surface active acid and corrosion mitigation control[J]. Drilling & Production Technology, 2010, 33(z1):146-150. [8] 陆强民. 表面活性剂变粘酸体系中缓蚀剂缓蚀剂的配伍性研究[D]. 北京: 中国石油大学(北京), 2017.LU Qiangmin. Compatibility study of inhibitors in surfactants viscous acid systems[D]. Beijing: China University of Petroleum(Beijing), 2017. [9] HANAFY A, NASR-EL-DIN H, RABIE A, et al. Effect of corrosion–inhibitor chemistry on the viscosity and corrosion rate of VES-Based acids[C]//SPE International Conference on Oilfield Chemistry. Galveston, Texas, USA: SPE, 2019: SPE-193574-MS. [10] LI L, NASR-EL-DIN H A A, ZHOU J, et al. Compatibility and phase behavior studies between corrosion inhibitors and surfactants-based acids[C]//SPE International Symposium and Exhibition on Formation Damage Control, Lafayette, Louisiana, USA, 2012: SPE-151641-MS. [11] AFRA S, SAMOUEI H, NASR-EL-DIN H. NMR investigation of viscoelastic surfactants compatibility with corrosion inhibitors[C]//International Petroleum Technology Conference. Dhahran, Kingdom of Saudi Arabia: IPTC, 2020: IPTC-19601-MS. [12] 阚伟海, 陈莉荣, 姜庆宏, 等. 复合缓蚀剂对碳钢腐蚀率的影响研究[J]. 表面技术,2015,44(4):127-131.KAN Weihai, CHEN Lirong, JIANG Qinghong, et al. Study on effects of composite corrosion inhibitor on the corrosion rate of carbon steel[J]. Surface Technology, 2015, 44(4):127-131. [13] 艾俊哲, 王欢, 段立东. 噻唑衍生物的缓蚀润滑性能及其在N80钢表面的吸附行为[J]. 腐蚀科学与防护技术,2019,31(5):501-507. doi: 10.11903/1002.6495.2019.026AI Junzhe, WANG Huan, DUAN Lidong. Inhibition and lubrication properties of thiazole derivative and its adsorption behaviour on N80 steel[J]. Corrosion Science and Protection Technology, 2019, 31(5):501-507. doi: 10.11903/1002.6495.2019.026 [14] 刘博祥, 许可, 卢拥军, 等. 新型曼尼希碱缓蚀剂的合成及缓蚀机理研究[J]. 应用化工,2022,51(9):2548-2552.LIU Boxiang, XU Ke, LU Yongjun, et al. Study on synthesis and mechanism of new Mannich base corrosion inhibitor[J]. Applied Chemical Industry, 2022, 51(9):2548-2552. [15] AL-GHAMDI A H, NASR-EL-DIN H A, AL-QAHTANI A A, et al. Impact of acid additives on the rheological properties of viscoelastic surfactants and their influence on field application[C]//SPE/DOE Symposium on Improved Oil Recovery. Tulsa, Oklahoma: SPE, 2004: SPE-89418-MS. [16] KUDRASHOU V Y, NASR-EL-DIN K H. Formation damage and compatibility issues associated with use of corrosion inhibitors in well acidizing-a review[C]//SPE Well Intervention Conference and Exhibition, The Woodlands, Texas, USA: SPE, 2019: SPE-194301-MS. [17] 张强, 崔波, 荣新明, 等. 曼尼希碱酸化缓蚀剂的缓蚀性能与缓蚀微观机理评价[J]. 能源化工,2023,44(3):43-48. doi: 10.3969/j.issn.1006-7906.2023.03.010ZHANG Qiang, CUI Bo, RONG Xinming, et al. Evaluation of corrosion inhibition performance and microscopic mechanism of Mannich base acidizing corrosion inhibitor[J]. Energy Chemical Industry, 2023, 44(3):43-48. doi: 10.3969/j.issn.1006-7906.2023.03.010 [18] 魏晓静, 石鑫, 葛鵬莉, 等. 改性咪唑啉类缓蚀剂缓蚀机理的分子模拟[J]. 分子科学学报,2021,37(4):352-359.WEI Xiaojing, SHI Xin, GE Pengli, et al. Molecular simulation of imidazoline corrosion inhibition by modification[J]. Journal of Molecular Science, 2021, 37(4):352-359. [19] 戴秀兰,魏俊,闫秀,等. 一种重建井筒用胍胶压裂液的制备及性能[J]. 钻井液与完井液,2024,41(2):262-269.DAI Xiulan, WEI Jun, YAN Xiu, et al. Preparation and properties of a guanidine gel fracturing fluid system for wellbore reconstruction[J]. Drilling Fluid & Completion Fluid, 2024, 41(2):262-269 [20] 崔波,冯浦涌,姚二冬,等. 单相缓速酸酸蚀裂缝导流规律[J]. 钻井液与完井液,2024,41(2):270-278.CUI Bo, FENG Puyong, YAO Erdong, et al. Development and corrosion inhibition mechanisms of a corrosion inhibitor for selfdiverting acids[J]. Drilling Fluid & Completion Fluid, 2024, 41(2):270-278 -