A Multifunctional Sand-carrying and Oil-displacement Fracturing Fluid System Based on Physical Cross-linking
-
摘要: 页岩油开采过程中压裂液的高携砂能力、破胶返排性能和地层伤害间的矛盾难以避免。以三嵌段表面活性剂纳米胶束(PN)与四元聚合物(PPS)相协同,依靠聚合物与纳米胶束的物理交联作用强化网络结构,开发了一种兼有高携砂性、低伤害性和高驱油性的新型多功能携砂驱油压裂液体系PN-PPS。PN-PPS依靠致密的网络结构而展现出优异的携砂能力及耐温抗剪切性,陶粒在PN-PPS溶液中携砂时间高达510 min。得益于体系的网络结构由物理交联作用强化,PN-PPS破胶迅速且彻底,破胶液残渣低于34.5 mg/L且其岩心伤害小于18%。进一步地,破胶液作为驱油剂展现出优异的驱油功能,在90 ℃下洗油效率高于99%、渗吸驱油率达20.46%、岩心驱替中采收率在水驱的基础上提高12.54%。因此,PN-PPS的应用能够在保证高效携砂压裂的同时实现不返排原位驱油,通过将压裂和驱油工艺相结合,PN-PPS的应用为页岩油开采提供了创新的解决方案,对压驱一体化技术的发展具有重要意义。Abstract: It is difficult to avoid the contradiction between the high sand-carrying capacity of fracturing fluids, the flowback and formation damage of gel breaking fluid during the shale oil extraction process. A new multifunctional sand-carrying and oil-displacement fracturing fluid system (PN-PPS), with high sand-carrying capacity, low damage and high oil displacement, it was developed by synergizing surfactant (PN) and polymers (PPS) and relying on the physical cross-linking to enhance the network structure. PN-PPS has excellent sand-carrying capacity and temperature and salt resistant performance by relying on the dense network structure. The sand-carrying time of ceramic in PN-PPS solution is as high as 510 min, profit from the network structure of the system strengthened by physical cross-linking. The gel breaking of PN-PPS quickly and thoroughly, the residue content of the gel breaking fluid is less than 34.5 mg/L and core damage is less than 18%. Further, PN-PPS shows excellent oil displacement performance, with oil washing efficiency higher than 99% at 90 ℃, and the oil imbibition recovery rate of 20.46%, compare with water displacement, the oil displacement rate of oil-displacing agent increased by 12.54%. Therefore, the application of PN-PPS can ensure efficient sand carrying fracturing and realize in-situ oil displacement without flowback, through combining the fracturing and oil repulsion processes. the application of PN-PPS provides an innovative solution for shale oil extraction, which is of great significance for the development of the integrated technology of fracturing and displacement.
-
表 1 不同APS浓度破胶下破胶液的各项参数
压裂液 APS/
%破胶液 η/
mPa·s残渣含量/
mg·L−1表面张力/
mN·m−1界面张力/
mN·m−1PN-PPS 0.05 5.28 34.79 28.57 2.43 0.10 4.85 34.52 27.35 1.58 0.15 4.29 33.86 27.65 0.87 0.20 3.84 33.63 26.83 0.99 表 2 破胶驱油剂对岩样基质损害率
岩样 岩心参数 渗透率/mD 基质损害率/
%直径/
cm长度/
cm孔隙度/
%损伤前 损伤后 1# 2.5 5 6.28 1.150 0.958 16.67 2# 2.5 5 5.97 1.076 0.868 19.33 3# 2.5 5 6.45 1.208 0.996 17.55 表 3 新疆油砂的成分分析
次数 油砂洗前
质量/g油砂洗前
质量/g质量
差/g含水率/
%含油率/
%1 5.0549 4.7320 0.3229 1.0450 5.342 2 5.0052 4.6908 0.3144 0.9820 5.299 3 4.9982 4.6867 0.3115 0.8720 5.361 平均值 5.0194 4.7032 0.3162 0.9663 5.334 表 4 破胶驱油剂的洗油效率测试结果
T/
℃清洗前油砂
质量/g清洗后油砂
含量/g质量
差/g洗油效
率/%50 1.9975 1.8320 0.1655 84.36 70 1.9945 1.8076 0.1869 95.08 90 2.0743 1.8920 0.1823 99.57 表 5 渗吸驱油效率的测试结果
驱油剂 岩心参数 驱油体
积/mL渗吸驱
油率/%直径/cm 长度/cm 孔隙度/% 水 2.5 5.0 5.97 0.36 10.32 破胶驱油剂 2.5 5.0 6.28 0.64 20.46 表 6 xxH1井中返排液的各项性能测试
实验次数 矿化度/
mg·L−1η/
mPa·s表面张力/
mN.m−1界面张力/
mN·m−11 18 340 2.47 27.48 1.03 2 18 297 2.73 28.63 0.85 3 17 982 2.63 28.54 0.73 均值 18 206 2.61 28.22 0.87 -
[1] HOFFMANN H. Fascinating phenomena in surfactant chemistry[J]. Advanced Materials, 1994, 6(2):116-129. doi: 10.1002/adma.19940060204 [2] 王欢,由庆,韩坤,等. 清洁压裂返排液复配驱油体系的构建及性能评价[J]. 油田化学,2018,35(2):302-307.WANG Huan, YOU Qing, HAN Kun, et al. Construction and performance evaluation of surfactant flooding system based on clean fracturing flowback fluid[J]. Oilfield Chemistry, 2018, 35(2):302-307. [3] 周文胜,王凯,刘晨,等. 清洁压裂液返排液再利用驱油体系研究[J]. 岩性油气藏,2017,29(2):160-166.ZHOU Wensheng, WANG Kai, LIU Chen, et al. Laboratory study on surfactant flooding system based on clean fracturing flowback fluid[J]. Lithologic Reservoirs, 2017, 29(2):160-166. [4] 吴新民,陈亚楠. 一种高性能清洁压裂液返排液驱油的可行性实验研究[J]. 科学技术与工程,2017,17(32):245-250.WU Xinmin, CHEN Yanan. Feasibility experimental investigation on the flowback liquid of a clear fracturing fluid with high performance for displacement of reservoir oil[J]. Science Technology and Engineering, 2017, 17(32):245-250. [5] 张志升. 适用于致密砂岩储层的多功能表面活性剂驱油压裂液体系[J]. 大庆石油地质与开发,2020,39(1):169-174.ZHANG Zhisheng. Multifunctional surfactant driven fracturing fluid system for tight sandstone reservoirs[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(1):169-174. [6] 毛金成,杨小江,宋志峰,等. 高温清洁压裂液体系HT-160的研制及性能评价[J]. 石油钻探技术,2017,45(6):105-109.MAO Jincheng, YANG Xiaojiang, SONG Zhifeng, et al. Development and performance evaluation of high temperature resistant clean fracturing fluid system HT-160[J]. Petroleum Drilling Techniques, 2017, 45(6):105-109. [7] 刘晨,王凯,耿艳宏,等. 清洁压裂液破胶液驱油体系实验研究[J]. 断块油气田,2017,24(1):96-100.LIU Chen, WANG Kai, GENG Yanhong, et al. Laboratory study on surfactant flooding system based on clean fracturing gel-breaking fluid[J]. Fault-Block Oil and Gas Field, 2017, 24(1):96-100. [8] 曹辉辉, 倪云峰. 新型聚驱井用复合压裂液的室内实验研究[C]//第四届全国低渗透油气藏压裂酸化技术研讨会论文集, 北京, 2010: 509-513.CAO Huihui, NI Yunfeng. Laboratory experimental study on a new type of compound fracturing fluid for polymer flooding wells[C]//Proceedings of the 4th National Symposium on Fracturing and Acidizing Technology for Low Permeability Oil and Gas Reservoirs, Beijing, 2010: 509-513. [9] 陈世军, 郭军, 杨继刚, 等. 一种用压裂液返排液制备的驱油剂及其制备方法: CN107828399A[P]. 2018-03-23.CHEN Shijun, GUO Jun, YANG Jigang, et al. An oil repellent prepared from fracturing fluid return fluid and its preparation method: CN107828399A[P]. 2018-03-23. [10] 张荣军, 屈乐, 任大忠, 等. 一种油田用不返排可转化为驱油剂的压裂液及其制备方法: CN110791277A[P]. 2020-02-14.ZHANG Rongjun, QU Le, REN Dazhong, et al. A fracturing fluid for oilfield that can be converted into oil repellent without return and its preparation method: CN110791277A[P]. 2020-02-14. [11] 崔伟香, 邹才能, 卢拥军, 等. 一种驱油压裂液及其制备方法与应用: CN106905947A[P]. 2017-06-30.CUI Weixiang, ZOU Caineng, LU Yongjun, et al. An oil repellent fracturing fluid and its preparation method and application: CN106905947A[P]. 2017-06-30. [12] 孙晨皓,黄莎,董赛亮,等. 适用压裂液性能评价的储层原位润湿性表征新方法[J]. 钻井液与完井液,2023,40(2):251-258.SUN Chenhao, HUANG Sha, DONG Sailiang, et al. A new reservoir wettability characterization method for fracturing fluid performance[J]. Drilling Fluid & Completion Fluid, 2023, 40(2):251-258. [13] 许江文,李建民,邬元月,等. 玛湖致密砾岩油藏水平井体积压裂技术探索与实践[J]. 中国石油勘探,2019,24(2):241-249.XU Jiangwen, LI Jianmin, WU Yuanyue, et al. Exploration and practice of volume fracturing technology in horizontal well of Mahu tight conglomerate reservoirs[J]. China Petroleum Exploration, 2019, 24(2):241-249. [14] 吕振虎,汪志臣,董景锋,等. 新疆油田玛湖地层水配制有机硼胍胶压裂液的应用[J]. 科学技术与工程,2018,18(30):75-80.LYU Zhenhu, WANG Zhichen, DONG Jingfeng, et al. Application of organic borohydrite fracturing fluid in formation water of Mahu formation in Xinjiang oilfield[J]. Science Technology and Engineering, 2018, 18(30):75-80. [15] 李婷,李新发,杨震,等. 具有渗吸驱油效果的压裂液体系室内研究[J]. 石化技术,2018,25(8):307-308.LI Ting, LI Xinfa, YANG Zhen, et al. Indoor study of fracturing fluid system with percolation oil repellent effect[J]. Petrochemical Industry Technology, 2018, 25(8):307-308. -
下载: