留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnFe-LDHs型固井水泥H2S防腐剂制备及性能评价

何敏会 姚明 闫宇博 梅开元 程小伟

何敏会,姚明,闫宇博,等. ZnFe-LDHs型固井水泥H2S防腐剂制备及性能评价[J]. 钻井液与完井液,2024,41(3):364-373 doi: 10.12358/j.issn.1001-5620.2024.03.012
引用本文: 何敏会,姚明,闫宇博,等. ZnFe-LDHs型固井水泥H2S防腐剂制备及性能评价[J]. 钻井液与完井液,2024,41(3):364-373 doi: 10.12358/j.issn.1001-5620.2024.03.012
HE Minhui, YAO Ming, YAN Yubo, et al.Preparation and evaluation of an h2s corrosion inhibitor for znfe-ldhs oil well cement[J]. Drilling Fluid & Completion Fluid,2024, 41(3):364-373 doi: 10.12358/j.issn.1001-5620.2024.03.012
Citation: HE Minhui, YAO Ming, YAN Yubo, et al.Preparation and evaluation of an h2s corrosion inhibitor for znfe-ldhs oil well cement[J]. Drilling Fluid & Completion Fluid,2024, 41(3):364-373 doi: 10.12358/j.issn.1001-5620.2024.03.012

ZnFe-LDHs型固井水泥H2S防腐剂制备及性能评价

doi: 10.12358/j.issn.1001-5620.2024.03.012
基金项目: 国家自然科学基金“无机-有机杂化改性Zn/Fe氢氧化物对地热水中H2S吸附机理研究”(42207206)。
详细信息
    作者简介:

    何敏会,在读硕士研究生,1998 年生,就读于西南石油大学材料工程专业,主要从事油井水泥方面的研究。电话 15908425967;E-mail:2466289369@qq.com

    通讯作者:

    程小伟,教授,博士生导师。E-mail:chengxw@swpu.edu.cn。

  • 中图分类号: TE256

Preparation and Evaluation of an H2S Corrosion Inhibitor for ZnFe-LDHs Oil Well Cement

  • 摘要: 我国高酸性油气田资源丰富,但在开发过程中固井水泥石将长期受到H2S等酸性介质的侵蚀,严重威胁到油气井的施工和安全生产。针对此问题,采用水热共沉淀法制备了ZnFe-LDHs型H2S防腐剂,并将掺有优选出的ZnFe-LDHs的水泥石置于5%浓度的Na2S溶液中分别在常温及60 ℃下浸泡1、3、7、14、28 d,通过抗压强度测试、XRD、SEM等表征手段,分析ZnFe-LDHs对水泥石的防H2S腐蚀能力和作用机理。结果表明,晶化温度为90 ℃下制备的Zn/Fe物质的量的比为(1~4)∶1的ZnFe-LDHs性能较好,均可提高水泥石的抗压强度,且强度随着Zn/Fe物质的量的比增加而增大,即掺加了Zn/Fe物质的量的比为4∶1的ZnFe-LDHs水泥石的作用效果最为明显,其强度增长了10.11%,而经Na2S溶液浸泡后,其早期强度降低,浸泡7 d时其强度相比于浸泡前在常温及60 ℃下分别增长了8.73%、4.96%,7 d后强度基本趋于稳定,这是由于ZnFe-LDHs能促进水化反应,并在浸泡后期与Na2S反应生成ZnS,提高水泥石的致密性,从而有效防止H2S对水泥石的腐蚀。

     

  • 图  1  90 ℃下不同Zn/Fe物质的量的比的ZnFe-LDHs的粒径分布

    图  2  不同反应条件下ZnFe-LDHs样品的XRD图谱

    图  3  不同反应条件下ZnFe-LDHs样品的FTIR谱图

    图  4  不同Zn/Fe物质的量的比下ZnFe-LDH样品的微观形貌和EDS谱图

    图  5  不同Zn/Fe物质的量的比的ZnFe-LDHs样品的TG-DTG曲线

    图  6  水泥石在(a)常温和(b)60 ℃下浸泡不同时间的抗压强度

    图  7  浸泡前(左)和浸泡后(右)的水泥石试样

    图  8  不同浸泡条件下水泥石的XRD衍射图谱

    图  9  K0及K4水泥石浸泡前后的微观形貌

    表  1  G级油井水泥化学成分及其质量分数

    化学
    成分
    质量分
    数/%
    化学
    成分
    质量分
    数/%
    化学
    成分
    质量分
    数/%
    SiO222.74MgO1.95K2O0.45
    Al2O32.62CaO61.79烧失量2.61
    Na2O0.23Fe2O34.15其他5.07
    下载: 导出CSV

    表  2  不同反应条件下ZnFe-LDHs的平均比表面积

    Zn/Fe物质的量的比不同温度(℃)下ZnFe-LDHs的
    平均比表面积/(m2/g)
    60708090
    1∶10.1810.5510.3450.629
    2∶10.3350.6170.3920.630
    3∶10.1090.1570.1780.851
    4∶10.1640.3680.1860.994
    下载: 导出CSV
  • [1] 周康. 高含硫天然气在管道输送中防腐对策研究[J]. 中国石油和化工标准与质量,2023,43(17):40-42.

    ZHOU Kang. Research on anti-corrosion countermeasures of high Sulfur natural gas in pipeline transportation[J]. China Petroleum and Chemical Standard and Quality, 2023, 43(17):40-42.
    [2] 牟春国,胡子见,韩勇,等. 固井水泥石的硫化氢腐蚀机理与抗腐蚀方法研究[J]. 石油化工应用,2010,29(2):113-116,125.

    MU Chunguo, HU Zijian, HAN Yong, et al. The hydrogen sulfide corrosion and protection of well cement sheath[J]. Petrochemical Industry Application, 2010, 29(2):113-116,125.
    [3] 张红丹. 水溶性树脂水泥浆体系的抗腐蚀性能研究[D]. 成都: 西南石油大学, 2016.

    ZHANG Hongdan. Study on corrosion resistance of water-soluble resin slurry system[D]. Chengdu: Southwest Petroleum University, 2016.
    [4] 严思明,王杰,卿大咏,等. 硫化氢对固井水泥石腐蚀研究[J]. 油田化学,2010,27(4):366-370,394.

    YAN Siming, WANG Jie, QING Dayong, et al. Research on corrosion of oil well cement stone by H2S[J]. Oilfield Chemistry, 2010, 27(4):366-370,394.
    [5] 邓成辉,金勇. 无固化剂水性树脂提高固井水泥石抗腐蚀性能[J]. 油田化学,2022,39(4):584-588,629.

    DENG Chenghui, JIN Yong. Corrosion resistance improvement of cement paste by waterborne resin without curing agent[J]. Oilfield Chemistry, 2022, 39(4):584-588,629.
    [6] 岳家平,武治强,王晓亮,等. 水泥石防H2S/CO2腐蚀机理及防治措施[J]. 当代化工,2020,49(9):2033-2036.

    YUE Jiaping, WU Zhiqiang, WANG Xiaoliang, et al. Mechanism and prevention measures of H2S/CO2 corrosion for cement paste[J]. Contemporary Chemical Industry, 2020, 49(9):2033-2036.
    [7] 辜涛. 高酸性气田环境下油井水泥石腐蚀机理研究[D]. 成都: 西南石油大学, 2013.

    GU Tao. Research on corrosion mechanism of oil well cement under high acid gas field environment[D]. Chengdu: Southwest Petroleum University, 2013.
    [8] 顾香. 防H2S腐蚀TH树脂水泥浆体系研究[D]. 成都: 西南石油大学, 2012.

    GU Xiang. Study on anti-H2S corrosion TH resin cement slurry system[D]. Chengdu: Southwest Petroleum University, 2012.
    [9] 王升正. 碱式碳酸锌对油井水泥石抗H2S腐蚀性能影响研究[D]. 成都: 西南石油大学, 2016.

    WANG Shengzheng. Effect of basic zinc carbonate on H2S corrosion resistance of oil well cement[D]. Chengdu: Southwest Petroleum University, 2016.
    [10] 梁玉凯,陈霄,张瑞金,等. 含H2S生产污水回注井解堵增注剂研究与应用[J]. 海洋石油,2015,35(3):42-45.

    LIANG Yukai, CHEN Xiao, ZHANG Ruijin, et al. Study and application of agents for increasing water injection in wells rejecting sewage containing H2S[J]. Offshore Oil, 2015, 35(3):42-45.
    [11] 郭华,马倩芸,武治强,等. 高炉矿渣改性铝酸盐水泥材料腐蚀机理与性能[J]. 钻井液与完井液,2022,39(2):221-226.

    GUO Hua, MA Qianyun, WU Zhiqiang, et al. Research on the effect of blast furnace slag on low-temperature hydration characteristics and high-temperature mechanical properties of aluminate cement[J]. Drilling Fluid & Completion Fluid, 2022, 39(2):221-226.
    [12] 王智超. 城市污水处理厂硫化氢排放特征及释放模型研究[D]. 北京: 清华大学, 2013.

    WANG Zhichao. Characteristics and simulation of hydrogen sulfide emission in a municipal wastewater treatment plant[D]. Beijing: Tsinghua University, 2013.
    [13] BÉLÉKÉ A B,MIZUHATA M. Electrochemical properties of nickel-aluminum layered double hydroxide/carbon composite fabricated by liquid phase deposition[J]. Journal of Power Sources, 2010, 195(22):7669-7676. doi: 10.1016/j.jpowsour.2010.05.068
    [14] WANG Y G, CHENG L, XIA Y Y. Electrochemical profile of nano-particle CoAl double hydroxide/active carbon supercapacitor using KOH electrolyte solution[J]. Journal of Power Sources, 2006, 153(1):191-196. doi: 10.1016/j.jpowsour.2005.04.009
    [15] ZHANG X L, GUO L, HUANG H L, et al. Removal of phosphorus by the core-shell bio-ceramic/Zn-layered double hydroxides (LDHs) composites for municipal wastewater treatment in constructed rapid infiltration system[J]. Water Research, 2016, 96:280-291. doi: 10.1016/j.watres.2016.03.063
    [16] ZHANG Z X, LI P L, ZHANG X, et al. Recent advances in Layered-Double-Hydroxides based noble metal nanoparticles efficient electrocatalysts[J]. Nanomaterials, 2021, 11(10):2644. doi: 10.3390/nano11102644
    [17] WEN J, LV Y H, XU Y Q, et al. Construction of a biodegradable, versatile nanocarrier for optional combination cancer therapy[J]. Acta Biomaterialia, 2019, 83(1):359-371.
    [18] LI Z S, XIAO K C, YU C L, et al. Three-dimensional graphene-like carbon nanosheets coupled with MnCo-layered double hydroxides nanoflowers as efficient bifunctional oxygen electrocatalyst[J]. International Journal of Hydrogen Energy, 2021, 46(69):34239-34251. doi: 10.1016/j.ijhydene.2021.07.221
    [19] XU W Z, ZHANG B L, XU B L, et al. The flame retardancy and smoke suppression effect of heptaheptamolybdate modified reduced graphene oxide/layered double hydroxide hybrids on polyurethane elastomer[J]. Composites Part A:Applied Science and Manufacturing, 2016, 91(1):30-40.
    [20] WANG J, LI Y S, CHEN W Y, et al. The rapid coagulation of graphene oxide on La-doped layered double hydroxides[J]. Chemical Engineering Journal, 2017, 309:445-453. doi: 10.1016/j.cej.2016.10.053
    [21] American Petroleum Institute. Recommended practice for testing well cements: API RP 10B-2[S]. Washington: API, 2013.
    [22] ZHANG T, XIAO M, ZHANG Z G, et al. Intercalation of aceclofenac/sulfobutyl ether-β-cyclodextrin complex into layered double hydroxides through swelling/restoration reaction and its controlled-release properties[J]. Journal of Nanomaterials, 2014, 2014:123781.
    [23] 杨保俊,薛中华,王百年,等. 类水滑石的制备与改性及其在聚丙烯阻燃中的应用[J]. 复合材料学报,2014,31(2):353-361.

    YANG Baojun, XUE Zhonghua, WANG Bainian, et al. Preparation and modification of layered double hydroxides and application in polypropylene as flame retardant[J]. Acta Materiae Compositae Sinica, 2014, 31(2):353-361.
    [24] 陈荣耀,宋建建,武中涛,等. 耐高温高密度防腐固井水泥浆[J]. 钻井液与完井液,2022,39(5):601-607.

    CHEN Rongyao, SONG Jianjian, WU Zhongtao, et al. High temperature high density cement slurry with corrosion inhibition property[J]. Drilling Fluid & Completion Fluid, 2022, 39(5):601-607.
    [25] 刘京,王百年,王宇,等. ZnAl-LDHs阻燃剂的改性及其在ABS中的应用[J]. 化工进展,2017,36(z1):361-365.

    LIU Jing, WANG Bainian, WANG Yu, et al. Surface modification of flame retardant ZnAl-LDHs and its application to ABS[J]. Chemical Industry and Engineering Progress, 2017, 36(z1):361-365.
    [26] 郭洪山,杨康博,姜浩然,等. 层状双氢氧化物在防腐领域应用的研究进展[J]. 石油化工高等学校学报,2023,36(3):44-51.

    GUO Hongshan, YANG Kangbo, JIANG Haoran, et al. Research progress of layered double hydroxide in the field of anticorrosion[J]. Journal of Petrochemical Universities, 2023, 36(3):44-51.
    [27] 潘国祥,陈健,胡双双,等. 镍锰水滑石制备及其热分解性能[J]. 稀有金属材料与工程,2016,45(S1):165-167.

    PAN Guoxiang, CHEN Jian, HU Shuangshuang, et al. Preparation and thermal decomposition properties of NiMn layered double hydroxides by an oxidation precipitation method[J]. Rare Metal Materials and Engineering, 2016, 45(S1):165-167.
    [28] 马炼. LDHs二维片层材料的结构调控及其抗腐蚀机制研究[D]. 北京: 中国科学院大学, 2021.

    MA Lian. The structure control and corrosion resistance mechanism of LDHs two-dimensional lamellar materials[D]. Beijing: University of Chinese Academy of Sciences, 2021.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  648
  • HTML全文浏览量:  251
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-23
  • 修回日期:  2024-03-02
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回

    尊敬的作者、读者:

    您好!

    为更好地服务于广大作者和读者,提升期刊编辑部的办公效率和服务质量,本刊编辑部办公地点及联系电话已进行变更。

    新办公地址:天津经济技术开发区第二大街83号中国石油天津大厦A517房间

    新联系电话:022-65278734

                         022-25275527

    我们衷心希望广大作者和读者能够继续支持我们的工作,共同推动期刊的发展和进步。

    再次感谢您对期刊的关注和支持!