Preparation and Evaluation of an H2S Corrosion Inhibitor for ZnFe-LDHs Oil Well Cement
-
摘要: 我国高酸性油气田资源丰富,但在开发过程中固井水泥石将长期受到H2S等酸性介质的侵蚀,严重威胁到油气井的施工和安全生产。针对此问题,采用水热共沉淀法制备了ZnFe-LDHs型H2S防腐剂,并将掺有优选出的ZnFe-LDHs的水泥石置于5%浓度的Na2S溶液中分别在常温及60 ℃下浸泡1、3、7、14、28 d,通过抗压强度测试、XRD、SEM等表征手段,分析ZnFe-LDHs对水泥石的防H2S腐蚀能力和作用机理。结果表明,晶化温度为90 ℃下制备的Zn/Fe物质的量的比为(1~4)∶1的ZnFe-LDHs性能较好,均可提高水泥石的抗压强度,且强度随着Zn/Fe物质的量的比增加而增大,即掺加了Zn/Fe物质的量的比为4∶1的ZnFe-LDHs水泥石的作用效果最为明显,其强度增长了10.11%,而经Na2S溶液浸泡后,其早期强度降低,浸泡7 d时其强度相比于浸泡前在常温及60 ℃下分别增长了8.73%、4.96%,7 d后强度基本趋于稳定,这是由于ZnFe-LDHs能促进水化反应,并在浸泡后期与Na2S反应生成ZnS,提高水泥石的致密性,从而有效防止H2S对水泥石的腐蚀。Abstract: In developing the highly acidic oil and gas resources which are abundant in China, the set cement in the wellbore will long endure the erosion of the acid media such as H2S, and the this seriously threatens the safe operation and production of the oil and gas wells. To deal with this problem, a ZnFe-LDHs type corrosion inhibitor against the corrosion by the H2S is developed through hydrothermal coprecipitation method. Set cement samples containing the selected ZnFe-LDHs are soaked in 5% Na2S solution at room temperature and 60 ℃ for 1 d, 3 d, 7 d, 14 d and 28 d, respectively. The ability of ZnFe-LDHs to resist H2S corrosion and the mechanisms of this resistance are then studied through compressive strength measurement, XRD and SEM. The study shows that the ZnFe-LDHs made at crystallization of 90 ℃ and Zn/Fe molar ratio of (1–4):1 has satisfactory corrosion control performance; it increases the compressive strength of the set cement and the compressive strength of the set cement increases with increase in the molar ratio of Zn/Fe, that is, the ZnFe-LDHs with Zn/Fe molar ratio of 4:1 has the best effect on the compressive strength of the set cement; the compressive strength of the set cement is increased by 10.11%. When the set cement sample are soaked in Na2S solution, the early strength of the set cement decreases. After soaking for 7 d, the compressive strength of the set cement soaked at room temperature and at 60 ℃ is increased by 8.73% and 4.96%, respectively. When the soaking time is longer than 7 d, the compressive strength of the set cement becomes stable, the reason for this is that ZnFe-LDHs is able to promote hydration reaction, and in the later stage of the soaking, ZnFe-LDHs react with Na2S to produce ZnS, thereby increasing the density of the set cement and preventing the corrosion of H2S to the set cement.
-
Key words:
- ZnFe-LDHs /
- Oil well cement /
- Corrosion inhibitor /
- H2S
-
表 1 G级油井水泥化学成分及其质量分数
化学
成分质量分
数/%化学
成分质量分
数/%化学
成分质量分
数/%SiO2 22.74 MgO 1.95 K2O 0.45 Al2O3 2.62 CaO 61.79 烧失量 2.61 Na2O 0.23 Fe2O3 4.15 其他 5.07 表 2 不同反应条件下ZnFe-LDHs的平均比表面积
Zn/Fe物质的量的比 不同温度(℃)下ZnFe-LDHs的
平均比表面积/(m2/g)60 70 80 90 1∶1 0.181 0.551 0.345 0.629 2∶1 0.335 0.617 0.392 0.630 3∶1 0.109 0.157 0.178 0.851 4∶1 0.164 0.368 0.186 0.994 -
[1] 周康. 高含硫天然气在管道输送中防腐对策研究[J]. 中国石油和化工标准与质量,2023,43(17):40-42.ZHOU Kang. Research on anti-corrosion countermeasures of high Sulfur natural gas in pipeline transportation[J]. China Petroleum and Chemical Standard and Quality, 2023, 43(17):40-42. [2] 牟春国,胡子见,韩勇,等. 固井水泥石的硫化氢腐蚀机理与抗腐蚀方法研究[J]. 石油化工应用,2010,29(2):113-116,125.MU Chunguo, HU Zijian, HAN Yong, et al. The hydrogen sulfide corrosion and protection of well cement sheath[J]. Petrochemical Industry Application, 2010, 29(2):113-116,125. [3] 张红丹. 水溶性树脂水泥浆体系的抗腐蚀性能研究[D]. 成都: 西南石油大学, 2016.ZHANG Hongdan. Study on corrosion resistance of water-soluble resin slurry system[D]. Chengdu: Southwest Petroleum University, 2016. [4] 严思明,王杰,卿大咏,等. 硫化氢对固井水泥石腐蚀研究[J]. 油田化学,2010,27(4):366-370,394.YAN Siming, WANG Jie, QING Dayong, et al. Research on corrosion of oil well cement stone by H2S[J]. Oilfield Chemistry, 2010, 27(4):366-370,394. [5] 邓成辉,金勇. 无固化剂水性树脂提高固井水泥石抗腐蚀性能[J]. 油田化学,2022,39(4):584-588,629.DENG Chenghui, JIN Yong. Corrosion resistance improvement of cement paste by waterborne resin without curing agent[J]. Oilfield Chemistry, 2022, 39(4):584-588,629. [6] 岳家平,武治强,王晓亮,等. 水泥石防H2S/CO2腐蚀机理及防治措施[J]. 当代化工,2020,49(9):2033-2036.YUE Jiaping, WU Zhiqiang, WANG Xiaoliang, et al. Mechanism and prevention measures of H2S/CO2 corrosion for cement paste[J]. Contemporary Chemical Industry, 2020, 49(9):2033-2036. [7] 辜涛. 高酸性气田环境下油井水泥石腐蚀机理研究[D]. 成都: 西南石油大学, 2013.GU Tao. Research on corrosion mechanism of oil well cement under high acid gas field environment[D]. Chengdu: Southwest Petroleum University, 2013. [8] 顾香. 防H2S腐蚀TH树脂水泥浆体系研究[D]. 成都: 西南石油大学, 2012.GU Xiang. Study on anti-H2S corrosion TH resin cement slurry system[D]. Chengdu: Southwest Petroleum University, 2012. [9] 王升正. 碱式碳酸锌对油井水泥石抗H2S腐蚀性能影响研究[D]. 成都: 西南石油大学, 2016.WANG Shengzheng. Effect of basic zinc carbonate on H2S corrosion resistance of oil well cement[D]. Chengdu: Southwest Petroleum University, 2016. [10] 梁玉凯,陈霄,张瑞金,等. 含H2S生产污水回注井解堵增注剂研究与应用[J]. 海洋石油,2015,35(3):42-45.LIANG Yukai, CHEN Xiao, ZHANG Ruijin, et al. Study and application of agents for increasing water injection in wells rejecting sewage containing H2S[J]. Offshore Oil, 2015, 35(3):42-45. [11] 郭华,马倩芸,武治强,等. 高炉矿渣改性铝酸盐水泥材料腐蚀机理与性能[J]. 钻井液与完井液,2022,39(2):221-226.GUO Hua, MA Qianyun, WU Zhiqiang, et al. Research on the effect of blast furnace slag on low-temperature hydration characteristics and high-temperature mechanical properties of aluminate cement[J]. Drilling Fluid & Completion Fluid, 2022, 39(2):221-226. [12] 王智超. 城市污水处理厂硫化氢排放特征及释放模型研究[D]. 北京: 清华大学, 2013.WANG Zhichao. Characteristics and simulation of hydrogen sulfide emission in a municipal wastewater treatment plant[D]. Beijing: Tsinghua University, 2013. [13] BÉLÉKÉ A B,MIZUHATA M. Electrochemical properties of nickel-aluminum layered double hydroxide/carbon composite fabricated by liquid phase deposition[J]. Journal of Power Sources, 2010, 195(22):7669-7676. doi: 10.1016/j.jpowsour.2010.05.068 [14] WANG Y G, CHENG L, XIA Y Y. Electrochemical profile of nano-particle CoAl double hydroxide/active carbon supercapacitor using KOH electrolyte solution[J]. Journal of Power Sources, 2006, 153(1):191-196. doi: 10.1016/j.jpowsour.2005.04.009 [15] ZHANG X L, GUO L, HUANG H L, et al. Removal of phosphorus by the core-shell bio-ceramic/Zn-layered double hydroxides (LDHs) composites for municipal wastewater treatment in constructed rapid infiltration system[J]. Water Research, 2016, 96:280-291. doi: 10.1016/j.watres.2016.03.063 [16] ZHANG Z X, LI P L, ZHANG X, et al. Recent advances in Layered-Double-Hydroxides based noble metal nanoparticles efficient electrocatalysts[J]. Nanomaterials, 2021, 11(10):2644. doi: 10.3390/nano11102644 [17] WEN J, LV Y H, XU Y Q, et al. Construction of a biodegradable, versatile nanocarrier for optional combination cancer therapy[J]. Acta Biomaterialia, 2019, 83(1):359-371. [18] LI Z S, XIAO K C, YU C L, et al. Three-dimensional graphene-like carbon nanosheets coupled with MnCo-layered double hydroxides nanoflowers as efficient bifunctional oxygen electrocatalyst[J]. International Journal of Hydrogen Energy, 2021, 46(69):34239-34251. doi: 10.1016/j.ijhydene.2021.07.221 [19] XU W Z, ZHANG B L, XU B L, et al. The flame retardancy and smoke suppression effect of heptaheptamolybdate modified reduced graphene oxide/layered double hydroxide hybrids on polyurethane elastomer[J]. Composites Part A:Applied Science and Manufacturing, 2016, 91(1):30-40. [20] WANG J, LI Y S, CHEN W Y, et al. The rapid coagulation of graphene oxide on La-doped layered double hydroxides[J]. Chemical Engineering Journal, 2017, 309:445-453. doi: 10.1016/j.cej.2016.10.053 [21] American Petroleum Institute. Recommended practice for testing well cements: API RP 10B-2[S]. Washington: API, 2013. [22] ZHANG T, XIAO M, ZHANG Z G, et al. Intercalation of aceclofenac/sulfobutyl ether-β-cyclodextrin complex into layered double hydroxides through swelling/restoration reaction and its controlled-release properties[J]. Journal of Nanomaterials, 2014, 2014:123781. [23] 杨保俊,薛中华,王百年,等. 类水滑石的制备与改性及其在聚丙烯阻燃中的应用[J]. 复合材料学报,2014,31(2):353-361.YANG Baojun, XUE Zhonghua, WANG Bainian, et al. Preparation and modification of layered double hydroxides and application in polypropylene as flame retardant[J]. Acta Materiae Compositae Sinica, 2014, 31(2):353-361. [24] 陈荣耀,宋建建,武中涛,等. 耐高温高密度防腐固井水泥浆[J]. 钻井液与完井液,2022,39(5):601-607.CHEN Rongyao, SONG Jianjian, WU Zhongtao, et al. High temperature high density cement slurry with corrosion inhibition property[J]. Drilling Fluid & Completion Fluid, 2022, 39(5):601-607. [25] 刘京,王百年,王宇,等. ZnAl-LDHs阻燃剂的改性及其在ABS中的应用[J]. 化工进展,2017,36(z1):361-365.LIU Jing, WANG Bainian, WANG Yu, et al. Surface modification of flame retardant ZnAl-LDHs and its application to ABS[J]. Chemical Industry and Engineering Progress, 2017, 36(z1):361-365. [26] 郭洪山,杨康博,姜浩然,等. 层状双氢氧化物在防腐领域应用的研究进展[J]. 石油化工高等学校学报,2023,36(3):44-51.GUO Hongshan, YANG Kangbo, JIANG Haoran, et al. Research progress of layered double hydroxide in the field of anticorrosion[J]. Journal of Petrochemical Universities, 2023, 36(3):44-51. [27] 潘国祥,陈健,胡双双,等. 镍锰水滑石制备及其热分解性能[J]. 稀有金属材料与工程,2016,45(S1):165-167.PAN Guoxiang, CHEN Jian, HU Shuangshuang, et al. Preparation and thermal decomposition properties of NiMn layered double hydroxides by an oxidation precipitation method[J]. Rare Metal Materials and Engineering, 2016, 45(S1):165-167. [28] 马炼. LDHs二维片层材料的结构调控及其抗腐蚀机制研究[D]. 北京: 中国科学院大学, 2021.MA Lian. The structure control and corrosion resistance mechanism of LDHs two-dimensional lamellar materials[D]. Beijing: University of Chinese Academy of Sciences, 2021. -
下载: