留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西湖凹陷上部杂色泥岩井壁失稳研究和钻井液优化

张海山

张海山. 西湖凹陷上部杂色泥岩井壁失稳研究和钻井液优化[J]. 钻井液与完井液,2024,41(2):205-214 doi: 10.12358/j.issn.1001-5620.2024.02.010
引用本文: 张海山. 西湖凹陷上部杂色泥岩井壁失稳研究和钻井液优化[J]. 钻井液与完井液,2024,41(2):205-214 doi: 10.12358/j.issn.1001-5620.2024.02.010
ZHANG Haishan.Researching the borehole instability of upper variegated mudstone strata and optimizing drilling fluid in Xihu sag[J]. Drilling Fluid & Completion Fluid,2024, 41(2):205-214 doi: 10.12358/j.issn.1001-5620.2024.02.010
Citation: ZHANG Haishan.Researching the borehole instability of upper variegated mudstone strata and optimizing drilling fluid in Xihu sag[J]. Drilling Fluid & Completion Fluid,2024, 41(2):205-214 doi: 10.12358/j.issn.1001-5620.2024.02.010

西湖凹陷上部杂色泥岩井壁失稳研究和钻井液优化

doi: 10.12358/j.issn.1001-5620.2024.02.010
基金项目: 中国海洋石油集团有限公司“七年行动计划”科技专项“快速评价建产关键技术应用研究”(CNOOC-KJ 135 ZDXM 39 SH04)。
详细信息
    作者简介:

    张海山,教授级高级工程师,中国海洋石油集团有限公司技术专家,主要从事海洋油气钻井技术工作,电话 ( 021)22830388;E-mail:zhanghsh@cnooc.com.cn。

  • 中图分类号: TE254.3

Researching the Borehole Instability of Upper Variegated Mudstone Strata and Optimizing Drilling Fluid in Xihu Sag

  • 摘要: 东海西湖凹陷部分区块在Φ311.15 mm井段钻遇龙井组、花港组杂色泥岩地层时,频繁发生起下钻阻卡、倒划眼困难等复杂情况,严重影响井下安全和作业时效。室内采用X射线衍射、扫描电镜、压汞法、抗压强度测试等方法对地层岩性组构特征、力学特性以及其他物理化学性能进行试验,研究井壁岩石失稳机理,表明杂色泥岩本身极具失稳特性。模拟现场条件,试验研究现场油基钻井液封堵和井壁稳定能力、钻井液润湿性能对岩屑井壁黏附和润滑性的影响,发现影响杂色泥岩起下钻遇阻的主控因素是钻井液胶结封堵稳定井壁能力和钻井液润湿性能不够。针对地层特性和钻井液性能不足,制定油基钻井液稳定井壁优化对策,强化钻井液封堵固壁性,提高地层承压能力;优选钻井液乳化剂,提高体系高温稳定性和润湿性。优化后的油基钻井液体系能够有效封堵泥岩微纳米孔缝,提高井壁稳定性,提高泥饼润滑性,可降低起下钻阻卡风险。现场应用表明,钻井过程中井壁稳定,起下钻、下套管等均顺利,与邻井相比起下钻效率提升96%~353%,取得了良好的应用效果,有效解决了西湖凹陷上部杂色泥岩地层井壁失稳问题。

     

  • 图  1  B8井岩石样品电镜扫描分析

    图  2  岩心CT扫描微裂隙微裂缝三维空间分布示意图

    图  3  微纳米聚合物封堵剂的电镜扫描图

    图  4  高温高压泥饼滤失速率对比曲线

    图  5  B9井携岩指数曲线

    表  1  B8井龙井组下部花港组上部地层岩屑黏土矿物分析

    井深/
    m
    岩性黏土总量/
    %
    黏土矿物含量/%
    I/SIKCI/S混层比
    3810棕色泥岩74.474175450
    3810灰绿色泥岩71.7601913855
    4300棕色泥岩73.8701412465
    4300灰绿色泥岩70.8661710750
    3900~4600棕色泥岩71.5711410550
    3900~4600灰绿色泥岩71.0601516965
    下载: 导出CSV

    表  2  不同滤失量油基钻井液对岩石浸泡强度的影响

    浸泡
    FLHTHP/
    mL
    直径/
    mm
    长度/
    mm
    压力值/
    kN
    单轴抗压强/
    MPa
    降幅/
    %
    浸泡前2551.324.6650.23
    0#-115.62548.717.2535.1330.06
    0#-28.62549.918.4837.6325.08
    0#-32.02547.820.8742.5115.36
    下载: 导出CSV

    表  3  现场钻井液裂缝封堵评价数据

    压差/
    MPa
    不同宽度微裂缝下的漏失量/mL
    100 µm200 µm300 µm400 µm
    31.21.4持续性漏失持续性漏失
    41.41.9
    51.6持续地间断漏失
    61.8
    82.4
    102.6
    下载: 导出CSV

    表  4  泥饼滤失速率数据

    t/
    min
    滤失速率/(mL·min−1)
    0 #配方钻井液现场钻井液1699/1767钻井液
    0000
    100.0300.0800.0100
    200.0160.0300.0096
    300.0130.0250.0060
    400.0100.0200.0050
    500.0120.0200.0050
    600.0130.0200.0040
    900.0180.0250.0030
    下载: 导出CSV

    表  5  钻屑黏聚极限评价实验数据

    体系加量/%情况描述
    0#配方钻井液80无岩屑松散
    150有成团,黏软,成球
    1699/1767钻井液160无岩屑松散
    200有成团,黏软
    下载: 导出CSV

    表  6  MOHGW对0#配方油基钻井液性能影响(热滚条件为120 ℃、16 h)

    配方条件AV/mPa·sPV/mPa·sYP/PaYP/PV/(Pa/mPa·s)φ6/φ3FLHTHP/mLFL滤膜/mLES/V
    1#热滚前30.0237.00.306/51010
    热滚后27.5207.50.386/53.41.6970
    2#热滚前34.0259.00.367/61020
    热滚后28.0217.00.336/52.60.91054
    下载: 导出CSV

    表  7  不同配方油基钻井液性能(热滚条件为120 ℃、16 h)

    配方条件AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    YP/PV/
    Pa/mPa·s
    φ6/φ3FLHTHP/
    mL
    ES/
    V
    3#热滚前31.0229.00.416/51 010
    热滚后29.0227.00.325/44.2920
    4#热滚前34.52311.50.5011/9980
    热滚后34.02311.00.489/82.81 010
    5#热滚前30.5219.50.458/7975
    热滚后25.5178.50.506/51.81 009
    下载: 导出CSV

    表  8  不同油水比油基钻井液性能(热滚条件为120 ℃、16 h)

    油水比热滚条件AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    YP/PV/
    Pa/mPa·s
    φ6/φ3FLHTHP/
    mL
    ES/
    V
    Zj
    85∶15热滚前27.0198.00.428/71015
    热滚后24.5186.50.366/53.210901.53
    80∶20热滚前29.5209.50.489/8990
    热滚后26.5188.50.477/63.010202.11
    75∶25热滚前40.02914.00.4811/10920
    热滚后32.02111.00.529/82.68502.74
    70∶30热滚前54.03420.00.5922/20760
    热滚后45.02817.00.6116/142.48204.07
    下载: 导出CSV

    表  9  泥饼质量评价数据

    介质钻井液配方FLAPI/mL泥饼厚度/mm泥饼外观黏滞系数黏滞系数下
    降幅度/%
    滤纸0#1.51.5虚厚0.2126
    6#1.00.5薄韧、光滑0.096354.7
    滤膜0#1.31.5虚厚0.3153
    6#0.80.5薄、光滑0.194438.3
    下载: 导出CSV

    表  10  应用井(B9、B10和B11井)与邻井(B6、B8井)时效数据统计

    项目B6B8B9B10B11
    井斜角/(°)31~6734~7022~4540~4220~43
    ρ/(g·cm-3)1.37~1.411.40~1.421.35~1.371.421.39~1.42
    划眼时间/h19.75247.500.5000
    起下钻时间/h143.75310.2561.0067.5059.75
    起下钻时效/(m·h-1)37.7017.9074.0074.3081.10
    下载: 导出CSV
  • [1] 王超,唐贤君,蒋一鸣,等. 西湖凹陷天台斜坡带北部构造变换带特征及油气地质意义[J]. 海洋地质与第四纪地质,2020,40(6):93-105.

    WANG Chao, TANG Xianjun, JIANG Yiming, et al. Characteristics of the structural transfer zone of northern Tiantai slope in Xihu sag of the East China Sea basin and their petroleum geological significances[J]. Marine Geology & Quaternary Geology, 2020, 40(6):93-105.
    [2] 施览玲,张海山,王涛,等. 含油岩屑深度固控技术在东海的应用[J]. 石油化工应用,2019,38(9):57-62.

    SHI Lanling, ZHANG Haishan, WANG Tao, et al. The application of deep solid control technology of oil cuttings in the East China Sea[J]. Petrochemical Industry Application, 2019, 38(9):57-62.
    [3] 朱胜. 油基钻井液体系在东海气田的试验应用[J]. 钻井液与完井液,2017,34(1):77-82.

    ZHU Sheng. Application of oil base drilling fluids in Donghai gas field[J]. Drilling Fluid & Completion Fluid, 2017, 34(1):77-82.
    [4] 李劲松,翁昊阳,段飞飞,等. 钻井液类型对井壁稳定的影响实例与防塌机理分析[J]. 科学技术与工程,2019,19(26):161-167.

    LI Jinsong, WENG Haoyang, DUAN Feifei, et al. Cases of the influence of drilling fluid type on borehole stability and analysis of anti-collapse mechanism[J]. Science Technology and Engineering, 2019, 19(26):161-167.
    [5] 黄宁,吕开河,孙金声,等. 油基钻井液提切剂研究现状与发展趋势[J]. 钻井液与完井液,2022,39(4):397-405.

    HUANG Ning, LYU Kaihe, SUN Jinsheng, et al. Research status-quo and development trend of gel strength additives for oil based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2022, 39(4):397-405.
    [6] 张海山. 中国海洋石油大位移井钻井技术现状及展望[J]. 石油钻采工艺,2023,45(1):1-11.

    ZHANG Haishan. Status and prospect of CNOOC's extended reach well drilling technologies[J]. Oil Drilling & Production Technology, 2023, 45(1):1-11.
    [7] 耿铁,邱正松,苗海龙,等. 东海大位移井油基钻井液体系研究及应用[J]. 石油化工高等学校学报,2019,32(6):84-89.

    GENG Tie, QIU Zhengsong, MIAO Hailong, et al. Study and field applications of oil-based drilling fluid for extended reach wells in the East China Sea[J]. Journal of Petrochemical Universities, 2019, 32(6):84-89.
    [8] 佘朝毅,李博,代锋,等. 微纳米井壁强化技术在长宁“大坝东”区域的应用[J]. 钻井液与完井液,2022,39(5):573-578.

    SHE Chaoyi, LI Bo, DAI Feng, et al. Borehole wall strengthening with micron and nano materials in "Dabadong" area of Changning[J]. Drilling Fluid & Completion Fluid, 2022, 39(5):573-578.
    [9] 刘洋洋,邓明毅,谢刚,等. 基于压力传递的钻井液纳米封堵剂研究与应用[J]. 钻井液与完井液,2017,34(6):24-28,34.

    LIU Yangyang, DENG Mingyi, XIE Gang, et al. Study and application of a drilling fluid plugging agent based on pressure transfer inhibition[J]. Drilling Fluid & Completion Fluid, 2017, 34(6):24-28,34.
    [10] 苏乐. 油基钻井液固壁技术实验研究[J]. 石化技术,2022,29(12):170-172.

    SU Le. Experimental study on wall solidification technology of oil based drilling fluid[J]. Petrochemical Industry Technology, 2022, 29(12):170-172.
    [11] 邢希金,谢仁军,邱正松,等. 井壁强化技术的研究及其在乐东区块的应用[J]. 钻井液与完井液,2023,40(1):67-72.

    XING Xijin, XIE Renjun, QIU Zhengsong, et al. A study on borehole wall strengthening technique and its application in block Ledong[J]. Drilling Fluid & Completion Fluid, 2023, 40(1):67-72.
    [12] 徐佳. 东海复杂泥岩地层钻井关键技术研究与实践[J]. 海洋石油,2023,43(1):63-67.

    XU Jia. Research and practice of key drilling technologies in complex mudstone formations in East China Sea[J]. Offshore Oil, 2023, 43(1):63-67.
    [13] 李炎军,胡友林,吴江,等. 油基钻井液润湿剂评价新方法[J]. 钻井液与完井液,2019,36(1):46-50.

    LI Yanjun, HU Youlin, WU Jiang, et al. A new method for evaluating wetting agents used in oil base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2019, 36(1):46-50.
    [14] 覃勇,蒋官澄,邓正强,等. 抗高温油基钻井液主乳化剂的合成与评价[J]. 钻井液与完井液,2016,33(1):6-10.

    QIN Yong, JIANG Guancheng, DENG Zhengqiang, et al. Synthesis and evaluation of a primary emulsifier for high temperature oil base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2016, 33(1):6-10.
    [15] 杨俊,蒋官澄,王国帅,等. 自交联型油基钻井液降滤失剂的研制与评价[J]. 钻井液与完井液,2022,39(6):685-691.

    YANG Jun, JIANG Guancheng, WANG Guoshuai, et al. Development and evaluation of a self-Crosslinking filter loss reducer for oil based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2022, 39(6):685-691.
  • 加载中
图(5) / 表(10)
计量
  • 文章访问数:  278
  • HTML全文浏览量:  90
  • PDF下载量:  189
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-20
  • 修回日期:  2023-11-06
  • 录用日期:  2023-12-06
  • 刊出日期:  2024-03-30

目录

    /

    返回文章
    返回

    欢迎订阅

    2025年《钻井液与完井液》,邮发代号为:18-423,编辑部不受理订阅业务。