Researching the Borehole Instability of Upper Variegated Mudstone Strata and Optimizing Drilling Fluid in Xihu Sag
-
摘要: 东海西湖凹陷部分区块在Φ311.15 mm井段钻遇龙井组、花港组杂色泥岩地层时,频繁发生起下钻阻卡、倒划眼困难等复杂情况,严重影响井下安全和作业时效。室内采用X射线衍射、扫描电镜、压汞法、抗压强度测试等方法对地层岩性组构特征、力学特性以及其他物理化学性能进行试验,研究井壁岩石失稳机理,表明杂色泥岩本身极具失稳特性。模拟现场条件,试验研究现场油基钻井液封堵和井壁稳定能力、钻井液润湿性能对岩屑井壁黏附和润滑性的影响,发现影响杂色泥岩起下钻遇阻的主控因素是钻井液胶结封堵稳定井壁能力和钻井液润湿性能不够。针对地层特性和钻井液性能不足,制定油基钻井液稳定井壁优化对策,强化钻井液封堵固壁性,提高地层承压能力;优选钻井液乳化剂,提高体系高温稳定性和润湿性。优化后的油基钻井液体系能够有效封堵泥岩微纳米孔缝,提高井壁稳定性,提高泥饼润滑性,可降低起下钻阻卡风险。现场应用表明,钻井过程中井壁稳定,起下钻、下套管等均顺利,与邻井相比起下钻效率提升96%~353%,取得了良好的应用效果,有效解决了西湖凹陷上部杂色泥岩地层井壁失稳问题。Abstract: The drilling complication of trip block or backreaming difficulty is occurred frequently when the variegated mudstone stratas of Longjing Formation & Huagang Formation are drilled at Φ311.15mm interval in Xihu Sag of the East China Sea Basin. The lithological fabric characteristics, mechanical properties, physical chemistry are researched by X-ray diffraction, scan with electric mirror, Mercury intrusion porosimetry, compressive strength test. It is indicated that the variegated mudstone is an extremely instability characteristic. Experimental study about sealing wellbore capacity, wellbore stability capability, wettability and lubricity of oil-based drilling fluid on site, the main controlling factors are discovered that the drilling fluid is insufficient performances of glueing and sealing and wettability. Targeting formation characteristics and insufficient properties of drilling fluid, optimization countermeasures determined for the drilling fluid are strengthening the sealing and wall fixing properties to improve the bearing capacity of the formation, and optimizing emulsifiers to improve the high-temperature stability and wettability. Optimized oil-based drilling fluid system can effectively seal micro and nano pore cracks in mudstone, improve wellbore stability and the lubricity of mud cakes, and reduce the risk of trip block. The good application results have been achieved on stability of wellbore, smooth tripping and casing running, improvement 96%~353% tripping efficiency compared to offset wells. As a result, the problem of borehole wall instability in the upper variegated mudstone formation is solved effectively.
-
表 1 B8井龙井组下部花港组上部地层岩屑黏土矿物分析
井深/
m岩性 黏土总量/
%黏土矿物含量/% I/S I K C I/S混层比 3810 棕色泥岩 74.4 74 17 5 4 50 3810 灰绿色泥岩 71.7 60 19 13 8 55 4300 棕色泥岩 73.8 70 14 12 4 65 4300 灰绿色泥岩 70.8 66 17 10 7 50 3900~4600 棕色泥岩 71.5 71 14 10 5 50 3900~4600 灰绿色泥岩 71.0 60 15 16 9 65 表 2 不同滤失量油基钻井液对岩石浸泡强度的影响
浸泡
液FLHTHP/
mL直径/
mm长度/
mm压力值/
kN单轴抗压强/
MPa降幅/
%浸泡前 25 51.3 24.66 50.23 0#-1 15.6 25 48.7 17.25 35.13 30.06 0#-2 8.6 25 49.9 18.48 37.63 25.08 0#-3 2.0 25 47.8 20.87 42.51 15.36 表 3 现场钻井液裂缝封堵评价数据
压差/
MPa不同宽度微裂缝下的漏失量/mL 100 µm 200 µm 300 µm 400 µm 3 1.2 1.4 持续性漏失 持续性漏失 4 1.4 1.9 5 1.6 持续地间断漏失 6 1.8 8 2.4 10 2.6 表 4 泥饼滤失速率数据
t/
min滤失速率/(mL·min−1) 0 #配方钻井液 现场钻井液 1699/1767钻井液 0 0 0 0 10 0.030 0.080 0.0100 20 0.016 0.030 0.0096 30 0.013 0.025 0.0060 40 0.010 0.020 0.0050 50 0.012 0.020 0.0050 60 0.013 0.020 0.0040 90 0.018 0.025 0.0030 表 5 钻屑黏聚极限评价实验数据
体系 加量/% 情况描述 0#配方钻井液 80 无岩屑松散 150 有成团,黏软,成球 1699/1767钻井液 160 无岩屑松散 200 有成团,黏软 表 6 MOHGW对0#配方油基钻井液性能影响(热滚条件为120 ℃、16 h)
配方 条件 AV/mPa·s PV/mPa·s YP/Pa YP/PV/(Pa/mPa·s) φ6/φ3 FLHTHP/mL FL滤膜/mL ES/V 1# 热滚前 30.0 23 7.0 0.30 6/5 1010 热滚后 27.5 20 7.5 0.38 6/5 3.4 1.6 970 2# 热滚前 34.0 25 9.0 0.36 7/6 1020 热滚后 28.0 21 7.0 0.33 6/5 2.6 0.9 1054 表 7 不同配方油基钻井液性能(热滚条件为120 ℃、16 h)
配方 条件 AV/
mPa·sPV/
mPa·sYP/
PaYP/PV/
Pa/mPa·sφ6/φ3 FLHTHP/
mLES/
V3# 热滚前 31.0 22 9.0 0.41 6/5 1 010 热滚后 29.0 22 7.0 0.32 5/4 4.2 920 4# 热滚前 34.5 23 11.5 0.50 11/9 980 热滚后 34.0 23 11.0 0.48 9/8 2.8 1 010 5# 热滚前 30.5 21 9.5 0.45 8/7 975 热滚后 25.5 17 8.5 0.50 6/5 1.8 1 009 表 8 不同油水比油基钻井液性能(热滚条件为120 ℃、16 h)
油水比 热滚条件 AV/
mPa·sPV/
mPa·sYP/
PaYP/PV/
Pa/mPa·sφ6/φ3 FLHTHP/
mLES/
VZj 85∶15 热滚前 27.0 19 8.0 0.42 8/7 1015 热滚后 24.5 18 6.5 0.36 6/5 3.2 1090 1.53 80∶20 热滚前 29.5 20 9.5 0.48 9/8 990 热滚后 26.5 18 8.5 0.47 7/6 3.0 1020 2.11 75∶25 热滚前 40.0 29 14.0 0.48 11/10 920 热滚后 32.0 21 11.0 0.52 9/8 2.6 850 2.74 70∶30 热滚前 54.0 34 20.0 0.59 22/20 760 热滚后 45.0 28 17.0 0.61 16/14 2.4 820 4.07 表 9 泥饼质量评价数据
介质 钻井液配方 FLAPI/mL 泥饼厚度/mm 泥饼外观 黏滞系数 黏滞系数下
降幅度/%滤纸 0# 1.5 1.5 虚厚 0.2126 6# 1.0 0.5 薄韧、光滑 0.0963 54.7 滤膜 0# 1.3 1.5 虚厚 0.3153 6# 0.8 0.5 薄、光滑 0.1944 38.3 表 10 应用井(B9、B10和B11井)与邻井(B6、B8井)时效数据统计
项目 B6 B8 B9 B10 B11 井斜角/(°) 31~67 34~70 22~45 40~42 20~43 ρ/(g·cm-3) 1.37~1.41 1.40~1.42 1.35~1.37 1.42 1.39~1.42 划眼时间/h 19.75 247.50 0.50 0 0 起下钻时间/h 143.75 310.25 61.00 67.50 59.75 起下钻时效/(m·h-1) 37.70 17.90 74.00 74.30 81.10 -
[1] 王超,唐贤君,蒋一鸣,等. 西湖凹陷天台斜坡带北部构造变换带特征及油气地质意义[J]. 海洋地质与第四纪地质,2020,40(6):93-105.WANG Chao, TANG Xianjun, JIANG Yiming, et al. Characteristics of the structural transfer zone of northern Tiantai slope in Xihu sag of the East China Sea basin and their petroleum geological significances[J]. Marine Geology & Quaternary Geology, 2020, 40(6):93-105. [2] 施览玲,张海山,王涛,等. 含油岩屑深度固控技术在东海的应用[J]. 石油化工应用,2019,38(9):57-62.SHI Lanling, ZHANG Haishan, WANG Tao, et al. The application of deep solid control technology of oil cuttings in the East China Sea[J]. Petrochemical Industry Application, 2019, 38(9):57-62. [3] 朱胜. 油基钻井液体系在东海气田的试验应用[J]. 钻井液与完井液,2017,34(1):77-82.ZHU Sheng. Application of oil base drilling fluids in Donghai gas field[J]. Drilling Fluid & Completion Fluid, 2017, 34(1):77-82. [4] 李劲松,翁昊阳,段飞飞,等. 钻井液类型对井壁稳定的影响实例与防塌机理分析[J]. 科学技术与工程,2019,19(26):161-167.LI Jinsong, WENG Haoyang, DUAN Feifei, et al. Cases of the influence of drilling fluid type on borehole stability and analysis of anti-collapse mechanism[J]. Science Technology and Engineering, 2019, 19(26):161-167. [5] 黄宁,吕开河,孙金声,等. 油基钻井液提切剂研究现状与发展趋势[J]. 钻井液与完井液,2022,39(4):397-405.HUANG Ning, LYU Kaihe, SUN Jinsheng, et al. Research status-quo and development trend of gel strength additives for oil based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2022, 39(4):397-405. [6] 张海山. 中国海洋石油大位移井钻井技术现状及展望[J]. 石油钻采工艺,2023,45(1):1-11.ZHANG Haishan. Status and prospect of CNOOC's extended reach well drilling technologies[J]. Oil Drilling & Production Technology, 2023, 45(1):1-11. [7] 耿铁,邱正松,苗海龙,等. 东海大位移井油基钻井液体系研究及应用[J]. 石油化工高等学校学报,2019,32(6):84-89.GENG Tie, QIU Zhengsong, MIAO Hailong, et al. Study and field applications of oil-based drilling fluid for extended reach wells in the East China Sea[J]. Journal of Petrochemical Universities, 2019, 32(6):84-89. [8] 佘朝毅,李博,代锋,等. 微纳米井壁强化技术在长宁“大坝东”区域的应用[J]. 钻井液与完井液,2022,39(5):573-578.SHE Chaoyi, LI Bo, DAI Feng, et al. Borehole wall strengthening with micron and nano materials in "Dabadong" area of Changning[J]. Drilling Fluid & Completion Fluid, 2022, 39(5):573-578. [9] 刘洋洋,邓明毅,谢刚,等. 基于压力传递的钻井液纳米封堵剂研究与应用[J]. 钻井液与完井液,2017,34(6):24-28,34.LIU Yangyang, DENG Mingyi, XIE Gang, et al. Study and application of a drilling fluid plugging agent based on pressure transfer inhibition[J]. Drilling Fluid & Completion Fluid, 2017, 34(6):24-28,34. [10] 苏乐. 油基钻井液固壁技术实验研究[J]. 石化技术,2022,29(12):170-172.SU Le. Experimental study on wall solidification technology of oil based drilling fluid[J]. Petrochemical Industry Technology, 2022, 29(12):170-172. [11] 邢希金,谢仁军,邱正松,等. 井壁强化技术的研究及其在乐东区块的应用[J]. 钻井液与完井液,2023,40(1):67-72.XING Xijin, XIE Renjun, QIU Zhengsong, et al. A study on borehole wall strengthening technique and its application in block Ledong[J]. Drilling Fluid & Completion Fluid, 2023, 40(1):67-72. [12] 徐佳. 东海复杂泥岩地层钻井关键技术研究与实践[J]. 海洋石油,2023,43(1):63-67.XU Jia. Research and practice of key drilling technologies in complex mudstone formations in East China Sea[J]. Offshore Oil, 2023, 43(1):63-67. [13] 李炎军,胡友林,吴江,等. 油基钻井液润湿剂评价新方法[J]. 钻井液与完井液,2019,36(1):46-50.LI Yanjun, HU Youlin, WU Jiang, et al. A new method for evaluating wetting agents used in oil base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2019, 36(1):46-50. [14] 覃勇,蒋官澄,邓正强,等. 抗高温油基钻井液主乳化剂的合成与评价[J]. 钻井液与完井液,2016,33(1):6-10.QIN Yong, JIANG Guancheng, DENG Zhengqiang, et al. Synthesis and evaluation of a primary emulsifier for high temperature oil base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2016, 33(1):6-10. [15] 杨俊,蒋官澄,王国帅,等. 自交联型油基钻井液降滤失剂的研制与评价[J]. 钻井液与完井液,2022,39(6):685-691.YANG Jun, JIANG Guancheng, WANG Guoshuai, et al. Development and evaluation of a self-Crosslinking filter loss reducer for oil based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2022, 39(6):685-691.