留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

塔河稠油高黏特性及其侵入钻井液治理探索

刘湘华 范胜 张淑霞 李双贵 于洋 沐宝泉 刘贺

刘湘华,范胜,张淑霞,等. 塔河稠油高黏特性及其侵入钻井液治理探索[J]. 钻井液与完井液,2024,41(2):198-204 doi: 10.12358/j.issn.1001-5620.2024.02.009
引用本文: 刘湘华,范胜,张淑霞,等. 塔河稠油高黏特性及其侵入钻井液治理探索[J]. 钻井液与完井液,2024,41(2):198-204 doi: 10.12358/j.issn.1001-5620.2024.02.009
LIU Xianghua, FAN Sheng, ZHANG Shuxia, et al.High viscosity characteristics of heavy oils produced in Tahe oilfield and treatment of drilling fluids contaminated by invasion of the heavy oils[J]. Drilling Fluid & Completion Fluid,2024, 41(2):198-204 doi: 10.12358/j.issn.1001-5620.2024.02.009
Citation: LIU Xianghua, FAN Sheng, ZHANG Shuxia, et al.High viscosity characteristics of heavy oils produced in Tahe oilfield and treatment of drilling fluids contaminated by invasion of the heavy oils[J]. Drilling Fluid & Completion Fluid,2024, 41(2):198-204 doi: 10.12358/j.issn.1001-5620.2024.02.009

塔河稠油高黏特性及其侵入钻井液治理探索

doi: 10.12358/j.issn.1001-5620.2024.02.009
基金项目: 山东省自然科学基金“稠环芳烃对CO水热变换新生氢的富存作用机制及协同调控稠油改质研究”(ZR2017BB021);中国博士后科学基金面上项目“CO水热变换新生氢对稠环芳烃氢化的作用机制研究”(2016M602219)。
详细信息
    作者简介:

    刘湘华,高级工程师,1979年生,毕业于中国石油大学(华东)石油工程专业,现在从事钻完井工程管理及相关研究工作。电话 (0991)3161153;E-mail:liuxh387.sbsj@sinopec.com

    通讯作者:

    张淑霞,E-mail:zshuxia823@163.com

  • 中图分类号: TE254

High Viscosity Characteristics of Heavy Oils Produced in Tahe Oilfield and Treatment of Drilling Fluids Contaminated by Invasion of the Heavy Oils

  • 摘要: 为了解决塔河高黏稠油侵害钻井液的问题,研究对比了塔河稠油与典型劣质重油的关键性质及塔河稠油沥青质-甲苯溶液黏度随浓度的变化规律,发现塔河稠油的高黏特性主要原因是沥青质含量高与芳香度高,以此为基础,设计2种实验方案。一是针对钻井初期稠油侵入量少的情况,通过在钻井液中添加适宜的分散剂和芳香馏分的复配体系,将稠油进行分散,结果为5#钻井液体系效果最好,TH121155X井稠油在无固钻井液中的分散度超过99%。二是针对稠油侵入量大的情况,对稠油进行包裹,使稠油失去黏附性,降低稠油在钻具上黏附,确保地面振动筛能够顺利筛分。研究数据表明,BGJ-2-4复配的包裹剂对塔河TH12471H井稠油具有良好的包裹效果,罐黏附率仅为0.3%。

     

  • 图  1  塔河稠油与典型重油关键性质对比

    图  2  沥青质浓度对沥青质-甲苯体系黏度的影响

    图  3  钻井液体系分散稠油效果评价照片

    图  4  包裹剂复配对稠油包裹情况照片

    注:每组图片从左往右依次为水冲洗前、水冲洗后和金属棒水冲洗后。

    表  1  7组钻井液体系出现分层时间

    钻井液不同温度分层时间/h钻井液不同温度分层时间/h
    20 ℃50 ℃20 ℃50 ℃
    1#28.000.105#306.0
    2#0.250.226#284.0
    3#28.004.007#295.5
    4#0.170.15
    下载: 导出CSV

    表  2  芳溶剂用量对塔河稠油在钻井液中分散性能的影响

    芳溶剂/
    %
    分散时间/
    h
    稠油量/
    %
    稠油分散度/
    %
    0(空白实验)2.01015.20
    32.01099.13
    52.01099.47
    72.01099.87
      注:分散剂加入量为0.3%。
    下载: 导出CSV

    表  3  塔河稠油量、分散时间对其在钻井液中分散性能影响

    稠油量/
    %
    芳溶剂/
    %
    分散时间/
    h
    稠油分散度/
    %
    1031.095.33
    31.597.86
    32.099.13
    52.099.47
    1532.098.02
    52.099.06
    2032.095.06
    52.097.33
      注:分散剂加入量为0.3%。
    下载: 导出CSV

    表  4  不同包裹剂和包裹剂复配对稠油包裹后的黏附情况

    包裹剂/
    %
    罐黏附
    率/%
    棒黏附
    率/%
    包裹剂/
    %
    罐黏附
    率/%
    棒黏附
    率/%
    空白实验75.66.3BGJ-2-18.915.7
    BGJ-23.25.7BGJ-2-27.325.7
    BGJ-410.22.1BGJ-2-310.726.0
    BGJ-511.33.3BGJ-2-40.30
      注:稠油加量为20%,在150 ℃包裹2 h,包裹剂加量为10%。
    下载: 导出CSV

    表  5  不同因素对包裹效果的影响

    稠油/%包裹时间/h包裹温度/℃包裹剂/%
    1020301.01.52.01301401505.07.510
    罐黏附率/%0.30.30.40.30.30.30.50.40.39.35.70.5
    棒黏附率/%0001.7001.20.5039.414.31.2
      注:表中对应非变量条件为150 ℃、2 h、包裹剂量10%、稠油量20%,如考察稠油加入量时,其他条件为150 ℃、2 h、包裹剂量为10%。
    下载: 导出CSV

    表  6  包裹剂用量对20%稠油包裹效果(1.5 h、130 ℃)

    BGJ-2-4/
    %
    稠油/
    %
    罐黏附率/
    %
    棒黏附率/
    %
    5.055.327.4
    5.0209.339.4
    7.5205.714.3
    1050.40.5
    10200.51.2
    下载: 导出CSV
  • [1] 赵毅,胡景磊,李浩程,等. 塔河稠油活性组分对油水界面性质和乳状液稳定性的影响[J]. 石油化工高等学校学报,2016,29(6):32-38. doi: 10.3969/j.issn.1006-396X.2016.06.007

    ZHAO Yi, HU Jinglei, LI Haocheng, et al. Effect of heavy oil constituents on the oil-water interfacial properties and emulsion stability[J]. Journal of Petrochemical Universities, 2016, 29(6):32-38. doi: 10.3969/j.issn.1006-396X.2016.06.007
    [2] 叶诚,邓小卫. 塔河油田复杂故障控制关键技术探讨[J]. 西部探矿工程,2021,33(12):76-79. doi: 10.3969/j.issn.1004-5716.2021.12.026

    YE Cheng, DENG Xiaowei. Discussion on key technologies for complex fault control in Tahe oilfield[J]. West-China Exploration Engineering, 2021, 33(12):76-79. doi: 10.3969/j.issn.1004-5716.2021.12.026
    [3] 刘毅龙,齐宁,甘俊冲,等. 聚驱油田复合高效解堵体系研究[J]. 钻井液与完井液,2023,40(5):685-692. doi: 10.12358/j.issn.1001-5620.2023.05.020

    LIU Yilong, QI Ning, GAN Junchong, et al. Compound and efficient blockage-removal agent for polymer flooding oilfield[J]. Drilling Fluid & Completion Fluid, 2023, 40(5):685-692. doi: 10.12358/j.issn.1001-5620.2023.05.020
    [4] 许杰,林海,董平华,等. 海上热采井钻井液储层保护技术[J]. 钻井液与完井液,2018,35(6):71-76. doi: 10.3969/j.issn.1001-5620.2018.06.013

    XU Jie, LIN Hai, DONG Pinghua,et al. Drilling Fluid Technology for Reservoir Protection in Offshore Thermal Production Well[J]. Drilling Fluid & Completion Fluid, 2018, 35(6):71-76. doi: 10.3969/j.issn.1001-5620.2018.06.013
    [5] 刘必心,龙军. 沥青质对塔河稠油黏度的影响机理研究[J]. 中国科学(化学),2018,48(4):434-441. doi: 10.1360/N032017-00171

    LIU Bixin. The mechanism of how asphaltene affects the viscosity of Tahe heavy oil[J]. Scientia Sinica (Chimica), 2018, 48(4):434-441. doi: 10.1360/N032017-00171
    [6] 何青水. 伊朗Y油田沥青质稠油侵入钻井液处理技术[J]. 科学技术与工程,2014,14(31):37-41. doi: 10.3969/j.issn.1671-1815.2014.31.007

    HE Qingshui. Treatment technology on drilling fluid contaminated by asphaltene heavy oil in Y oilfield, Iran[J]. Science Technology and Engineering, 2014, 14(31):37-41. doi: 10.3969/j.issn.1671-1815.2014.31.007
    [7] 郭京华,夏柏如,赵增新,等. F19井沥青侵及相关井下复杂情况的处理[J]. 特种油气藏,2012,19(4):134-137. doi: 10.3969/j.issn.1006-6535.2012.04.034

    GUO Jinghua, XIA Bairu, ZHAO Zengxin, et al. Treatments for bitumen contamination and associated downhole problems in well F19[J]. Special Oil & Gas Reservoirs, 2012, 19(4):134-137. doi: 10.3969/j.issn.1006-6535.2012.04.034
    [8] 胡德云,李尧,杨国兴,等. 伊朗YD油田稠油沥青层钻井液技术[J]. 钻井液与完井液,2013,30(3):7-12. doi: 10.3969/j.issn.1001-5620.2013.03.003

    HU Deyun, LI Yao, YANG Guoxing, et al. Drilling fluid technology for heavy crude oil asphalt reservoir in YD oilfield of Iran[J]. Drilling Fluid & Completion Fluid, 2013, 30(3):7-12. doi: 10.3969/j.issn.1001-5620.2013.03.003
    [9] 高翔,蒋建方,马凤,等. 伊朗YD油田致密储层酸渣潜在性分析与预防研究[J]. 钻井液与完井液,2016,33(3):107-111. doi: 10.3969/j.issn.1001-5620.2016.03.022

    GAO Xiang, JIANG Jianfang, MA Feng, et al. Analysis of the Potential of Generating Acid Sludge in the Dense Reservoir Formations in Block YD (Iran) and the Prevention of the Acid Sludge Generation[J]. Drilling Fluid & Completion Fluid, 2016, 33(3):107-111. doi: 10.3969/j.issn.1001-5620.2016.03.022
    [10] 殷璎. 稠油污染钻井液固化研究进展[J]. 辽宁化工,2014,43(8):1040-1042.

    YIN Ying. Research progress in solidification of contaminated drilling fluids[J]. Liaoning Chemical Industry, 2014, 43(8):1040-1042.
    [11] 刘雪婧,刘刚,王苏南,等. 油基钻井液高温乳化剂的制备与性能评价[J]. 油田化学,2022,39(4):571-576. doi: 10.19346/j.cnki.1000-4092.2022.04.001

    LIU Xuejing, LIU Gang, WANG Sunan, et al. Preparation and performance evaluation of emulsifier with high temperature resistance for oil-based drilling fluid[J]. Oilfield Chemistry, 2022, 39(4):571-576. doi: 10.19346/j.cnki.1000-4092.2022.04.001
    [12] 王治法,肖超,侯立中,等. 伊朗雅达油田复杂地层钻井液技术[J]. 钻井液与完井液,2012,29(5):40-43. doi: 10.3969/j.issn.1001-5620.2012.05.011

    WANG Zhifa, XIAO Chao, HOU Lizhong, et al. Drilling fluid technology for troublesome formation in yadavaran oil field of Iran[J]. Drilling Fluid & Completion Fluid, 2012, 29(5):40-43. doi: 10.3969/j.issn.1001-5620.2012.05.011
    [13] 张平,贾晓斌,白彬珍,等. 塔河油田钻井完井技术进步与展望[J]. 石油钻探技术,2019,47(2):1-8.

    ZHANG Ping, JIA Xiaobin, BAI Binzhen, et al. Progress and outlook on drilling and completion technologies in the Tahe oilfield[J]. Petroleum Drilling Techniques, 2019, 47(2):1-8.
    [14] 邱正松,刘扣其,曹杰,等. 油基钻井液低温流变特性实验研究[J]. 钻井液与完井液,2014,31(3):32-34. doi: 10.3969/j.issn.1001-5620.2014.03.008

    QIU Zhengsong, LIU Kouqi, CAO Jie, et al. Study on low temperature rheology of oil base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2014, 31(3):32-34. doi: 10.3969/j.issn.1001-5620.2014.03.008
    [15] 汪志明,平立秋,王玺,等. 欠平衡钻井油气藏与井筒耦合模型[J]. 石油勘探与开发,2009,36(5):646-650. doi: 10.3321/j.issn:1000-0747.2009.05.015

    WANG Zhiming, PING Liqiu, WANG Xi, et al. Coupled model for reservoir flow and wellbore flow in underbalanced drilling[J]. Petroleum Exploration and Development, 2009, 36(5):646-650. doi: 10.3321/j.issn:1000-0747.2009.05.015
    [16] PEREZ G P. Silicate-containing additives for well bore treatments and associated methods: US 7392846 B2[P]. 2008-07-01.
    [17] HAN G, HUNTER K, RESSLER J, et al. Deepwater bitumen drilling: what happened downhole?[C]//IADC/SPE Drilling Conference. Orlando, Florida, USA: SPE, 2008: SPE-111600-MS.
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  42
  • PDF下载量:  175
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-12
  • 修回日期:  2024-01-22
  • 录用日期:  2024-02-12
  • 刊出日期:  2024-03-30

目录

    /

    返回文章
    返回