留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

陵水区块超深水高性能恒流变油基钻井液技术

刘智勤 徐加放 彭巍 徐超 于晓东

刘智勤,徐加放,彭巍,等. 陵水区块超深水高性能恒流变油基钻井液技术[J]. 钻井液与完井液,2024,41(2):184-190 doi: 10.12358/j.issn.1001-5620.2024.02.007
引用本文: 刘智勤,徐加放,彭巍,等. 陵水区块超深水高性能恒流变油基钻井液技术[J]. 钻井液与完井液,2024,41(2):184-190 doi: 10.12358/j.issn.1001-5620.2024.02.007
LIU Zhiqin, XU Jiafang, PENG Wei, et al.A high performance constant rheology oil based drilling fluid for ultra deep water drilling in Lingshui block[J]. Drilling Fluid & Completion Fluid,2024, 41(2):184-190 doi: 10.12358/j.issn.1001-5620.2024.02.007
Citation: LIU Zhiqin, XU Jiafang, PENG Wei, et al.A high performance constant rheology oil based drilling fluid for ultra deep water drilling in Lingshui block[J]. Drilling Fluid & Completion Fluid,2024, 41(2):184-190 doi: 10.12358/j.issn.1001-5620.2024.02.007

陵水区块超深水高性能恒流变油基钻井液技术

doi: 10.12358/j.issn.1001-5620.2024.02.007
基金项目: 中海石油(中国)有限公司科研项目“海上精准控压钻井技术研究及工程示范”(YXKY-2021-HN-01)。
详细信息
    作者简介:

    刘智勤,高级工程师,中国石油大学(华东)石油与天然气工程专业在读博士研究生,主要从事海洋钻井完井技术研究与相关管理工作。E-mail:34374216@qq.com

    通讯作者:

    徐加放,教授、博士研究生导师,主要从事水合物开发与防治、钻井液研发及废弃物处理、井壁稳定、储层保护、分子模拟与微流控技术等研究工作。E-mail:xjiafang@upc.edu.cn

  • 中图分类号: TE254

A High Performance Constant Rheology Oil Based Drilling Fluid for Ultra Deep Water Drilling in Lingshui Block

  • 摘要: 超深水钻井不仅面临低温、井壁不稳定、地层安全作业压力窗口窄以及井眼清洁困难等问题,还对钻井液的性能提出了更高的要求。通过对乳化剂的分子结构进行设计,研制出一种同时具备乳化和流型调控作用的新型乳化剂KMUL,并以此为主要处理剂,构建了一套适用于南海西部陵水区块超深水工况的高性能恒流变油基钻井液,并对钻井液性能进行了评价。结果表明:该钻井液具有良好的恒流变特性,在温度为2~150 ℃、压力为0~56 MPa范围内的流变性能较为稳定;钻井液的抗污染能力较强,当岩屑和海水的加量为15%时,钻井液的综合性能比较稳定;钻井液的储层保护效果较好,岩心渗透率恢复值能达到92%以上;钻井液的生物毒性较低,具备良好的环境保护性能。LS-C超深水井的现场应用结果表明, 不同井深的现场钻井液流变性能和破乳电压均比较稳定,钻井液当量循环密度始终维持在低位,施工过程顺利,井筒直径规整,未出现井下复杂情况。研究结果表明,该高性能恒流变油基钻井液满足陵水区块超深水钻井施工的需求。

     

  • 图  1  新型乳化剂KMUL的红外光谱图

    表  1  乳化剂加量优选实验结果

    KMUL/
    %
    KSHIELD/
    %
    T测试/
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    ES/
    V
    0.50.7453.54310.5235
    3039.5345.5270
    5020.0182.0251
    0.70.9456.04511.0419
    3041.0356.0450
    5024.5222.5422
    0.91.2460.04911.0512
    3045.5369.5530
    5038.5308.5508
    1.21.5465.55312.5710
    3051.54011.5760
    5040.0319.0732
    下载: 导出CSV

    表  2  有机土加量优选实验结果

    有机土/
    %
    T/
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    φ6/φ3ES/
    V
    FLHTHP/
    mL
    基浆434.02410.010/9
    3028.0199.09/8
    5024.0159.08/7
    7018.0108.06/52532.6
    1.0439.0318.010/9
    3029.5227.59/8
    5025.5187.58/7
    7017.5116.58/75372.5
    1.5448.5399.511/9
    3040.5319.511/9
    5032.5248.510/8
    7021.0138.011/106532.5
    2.0463.05211.012/10
    3047.5389.512/10
    5039.5318.512/10
    7024.0159.015/147032.4
      注:实验条件均为在50 ℃老化16 h后,FLHTHP在120 ℃下测定。
    下载: 导出CSV

    表  3  降滤失剂优选实验结果

    降滤失剂降滤失剂/
    %
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    FLHTHP/
    mL
    基浆047.5389.52.4
    KCWF11.050.54010.52.4
    1.552.04012.02.2
    2.058.04414.52.0
    KCWF21.053.04211.02.3
    1.556.54313.52.1
    2.060.54515.51.8
    KMOFIL1.048.5399.51.8
    1.549.53910.51.5
    2.051.04011.01.3
      注:实验条件均为在50 ℃老化16 h后,测试温度为30 ℃,FLHTHP在120 ℃下测定。
    下载: 导出CSV

    表  4  钻井液体系在50 ℃下热滚不同时间后的性能

    t热滚/
    h
    T/
    PV/
    mPa·s
    YP/
    Pa
    φ6/φ3Gel/
    Pa/Pa/Pa
    ES/
    V
    FLHTHP/
    mL
    164391111/96.0/7.0/8.57801.8
    10311111/9
    20241010/8
    70139.511/10
    364411111/106.0/7.0/8.57951.8
    10321011/10
    20231010/9
    70131011/10
    724461010/96.5/7.5/8.58651.8
    10411010/9
    20331010/9
    70159.511/10
      注:FLHTHP在120 ℃测定,Gel的测定间隔为10 s、10 min和30 min。
    下载: 导出CSV

    表  5  高性能恒流变油基钻井液抗污染性能

    污染物加量/
    %
    PV/
    mPa·s
    YP/
    Pa
    φ6/φ3ES/
    V
    FLHTHP/
    mL
    岩屑01898/76471.8
    51599/86362.0
    10181112/106132.1
    15201314/126022.7
    海水01898/76471.8
    5231110/86132.2
    15251414/125652.5
    20271616/145332.9
      注:钻井液老化条件为50 ℃、16 h,测定温度为30 ℃,FLHTHP在120 ℃测定,岩屑取自陵水区块储层段。
    下载: 导出CSV

    表  6  钻井液在不同温度压力下的流变性能

    T/
    P/
    MPa
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    φ6/φ3
    2059.246.213.018.5/17.3
    20050.933.117.823.5/22.1
    2864.945.219.724.8/24.1
    40039.623.815.821.2/20.1
    2852.735.517.223.5/22.6
    4260.642.717.925.1/23.2
    60030.015.514.520.1/19.3
    2839.522.916.622.7/21.6
    4245.328.017.324.1/23.3
    90024.19.314.823.6/22.7
    2832.315.117.226.4/25.6
    4235.417.118.328.3/27.5
    5639.620.419.230.3/29.7
    1101425.59.815.725.5/25.1
    2828.311.416.927.1/26.3
    4230.712.518.228.2/27.5
    5634.114.819.330.2/29.1
    1301422.97.815.124.2/23.1
    4226.29.716.526.4/25.3
    5628.911.217.727.5/26.4
    1501418.64.414.219.7/17.7
    5626.59.517.020.1/18.4
    下载: 导出CSV

    表  7  钻井液体系储层保护性能评价结果

    岩心编号Ko/mDKd/mDKd/Ko/%
    137.6334.7592.34
    228.2326.1292.52
    319.5217.9892.13
    48.938.2492.27
    下载: 导出CSV

    表  8  不同深度对应的现场钻井液性能

    井深/
    m
    T/
    ρ/
    g·cm−3
    FV/
    s
    PV/
    mPa·s
    YP/
    Pa
    Gel/
    Pa/Pa
    ES/
    V
    FLHTHP/
    mL
    油水比
    351041.025730117/85054.580∶20
    102110
    201910
    701710
    369041.026631128/95233.977∶23
    102211
    202111
    701811
    385041.076929127/85562.877∶23
    101912
    201811
    701611
    下载: 导出CSV

    表  9  LS-C井目的层钻进过程中ECD的变化情况

    井深/
    m
    ρ/
    g·cm−3
    ECD/
    g·cm−3
    实际井筒
    直径/mm
    标准井筒
    直径/mm
    34501.021.06313311.15
    35501.021.06313
    36501.021.06313
    37501.041.09314
    38501.071.11314
    下载: 导出CSV
  • [1] 刘和兴,方满宗,刘智勤,等. 南海西部陵水区块超深水井喷射下导管技术[J]. 石油钻探技术,2017,45(1):10-16.

    LIU Hexing, FANG Manzong, LIU Zhiqin, et al. Jetting-Based conductor running technology used in Ultra-Deep water well of Lingshui block in the western South China sea[J]. Petroleum Drilling Techniques, 2017, 45(1):10-16.
    [2] 邢希金,邱正松,刘书杰. 深水钻井平流变油基钻井液体系室内研究[J]. 重庆科技学院学报(自然科学版),2016,18(4):8-11.

    XING Xijin, QIU Zhengsong, LIU Shujie. Laboratory study on flat rheology OBM for deep water drilling[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2016, 18(4):8-11.
    [3] 陈亮,由福昌,周书胜,等. 深水恒流变无固相储层钻井液的制备与性能评价[J]. 油田化学,2023,40(1):1-6.

    CHEN Liang, YOU Fuchang, ZHOU Shusheng, et al. Preparation and performance evaluation of solid-free constant rheological drilling fluid with reservoir protection for deep-water drilling[J]. Oilfield Chemistry, 2023, 40(1):1-6.
    [4] 罗健生,李自立,罗曼,等. 深水钻井液国内外发展现状[J]. 钻井液与完井液,2018,35(3):1-7.

    LUO Jiansheng, LI Zili, LUO Man, et al. Status quo of the development of deep water drilling fluids worldwide[J]. Drilling Fluid & Completion Fluid, 2018, 35(3):1-7.
    [5] 罗增,曹权,沈欣宇,等. 钻井过程循环温度敏感性因素分析与应用[J]. 非常规油气,2021,8(5):93-99.

    LUO Zeng, CAO Quan, SHEN Xinyu, et al. Analysis and application of circulating temperature sensitivity factors in drilling process[J]. Unconventional Oil & Gas, 2021, 8(5):93-99.
    [6] 陈彬,李超,张春杰,等. 深水合成基钻井液高温高压流变特性[J]. 科学技术与工程,2022,22(4):1408-1415.

    CHEN Bin, LI Chao, ZHANG Chunjie, et al. High temperature high pressure rheological property of synthetic-based mud[J]. Science Technology and Engineering, 2022, 22(4):1408-1415.
    [7] 史赫,蒋官澄,王国帅,等. 恒流变合成基钻井液关键机理研究[J]. 钻井液与完井液,2020,37(1):31-37.

    SHI He, JIANG Guancheng, WANG Guoshuai, et al. Study on key mechanisms of constant rheology synthetic base drilling fluids[J]. Drilling Fluid & Completion Fluid, 2020, 37(1):31-37.
    [8] 韩子轩. 合成基钻井液流型调节剂的研制及其作用机理[J]. 钻井液与完井液,2020,37(2):148-152.

    HAN Zixuan. Development and working mechanism of flow pattern enhancer for synthetic base drilling fluids[J]. Drilling Fluid & Completion Fluid, 2020, 37(2):148-152.
    [9] 胡文军,向雄,杨洪烈. FLAT-PRO深水恒流变合成基钻井液及其应用[J]. 钻井液与完井液,2017,34(2):15-20.

    HU Wenjun, XIANG Xiong, YANG Honglie. Research and application of FLAT-PRO constant rheology synthetic base drilling fluid in deepwater operation[J]. Drilling Fluid & Completion Fluid, 2017, 34(2):15-20.
    [10] 狄明利,赵远远,邱文发. FLAT-PRO合成基钻井液在南海东部超深水井的应用[J]. 广东化工,2019,46(20):38-40.

    DI Mingli, ZHAO Yuanyuan, QIU Wenfa. Application of FLAT-PRO synthetic base drilling fluid in ultra-deepwater well in the eastern South China sea[J]. Guangdong Chemical Industry, 2019, 46(20):38-40.
    [11] 刘正礼,严德. 南海东部荔湾22–1–1超深水井钻井关键技术[J]. 石油钻探技术,2019,47(1):13-19. doi: 10.11911/syztjs.2019026

    LIU Zhengli, YAN De. Key drilling techniques of Liwan 22-1-1 Ultra-Deepwater well in East of South China sea[J]. Petroleum Drilling Techniques, 2019, 47(1):13-19. doi: 10.11911/syztjs.2019026
    [12] 刘书杰,刘和兴,王成文,等. 超深水裂缝储层自降解随钻堵漏剂性能研究[J]. 中国海上油气,2022,34(2):107-115.

    LIU Shujie, LIU Hexing, WANG Chengwen, et al. Study on properties of self-degrading lost circulation agent while drilling in ultra-deepwater fractured reservoir[J]. China Offshore Oil and Gas, 2022, 34(2):107-115.
    [13] 耿铁. 恒流变合成基钻井液新机理及体系的研制[J]. 海洋工程装备与技术,2019,6(S1):315-319.

    GENG Tie. Development of new mechanism and system of Flat-Rheological synthetic base drilling fluid[J]. Ocean Engineering Equipment and Technology, 2019, 6(S1):315-319.
    [14] 耿铁. 深水恒流变合成基钻井液技术研究[D]. 青岛: 中国石油大学(华东), 2019.

    GENG Tie. Study on flat-rheology synthetic-based drilling fluid for deepwater drilling[D]. Qingdao: China University of Petroleum(East China), 2019.
    [15] 张桓,罗春芝,张世录,等. 抗温抗污染油基钻井液乳化剂的研制及在阳101区块的应用[J]. 钻采工艺,2022,45(6):146-151.

    ZHANG Huan, LUO Chunzhi, ZHANG Shilu, et al. Development of Anti-temperature and Anti-pollution Emulsifier for Oil-Based Drilling Fluid and Its Application in Yang101 Block[J]. Drilling & Production Technology, 2022, 45(6):146-151.
  • 加载中
图(1) / 表(9)
计量
  • 文章访问数:  132
  • HTML全文浏览量:  43
  • PDF下载量:  175
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-16
  • 修回日期:  2023-12-29
  • 刊出日期:  2024-04-02

目录

    /

    返回文章
    返回