The Experimental Methods to Evaluate the Fluids Sensitivity Damage of Ultra-deep and Ultra-tight Gas Reservoirs
-
摘要: 超致密储层具有基块致密、黏土矿物丰富等特点,潜在流体敏感性强,准确评价储层流体敏感程度对优选入井工作液性能至关重要。选取超致密气层砂岩岩心,改进了压力衰减法评价储层流体敏感性,并与常规的压力衰减法和改进的稳态流体敏感性实验方法对比分析。结果显示,常规的压力衰减法样品水敏程度为中等偏弱,改进的压力衰减法评价样品水敏程度中等偏强,实验结果与改进的高温高回压测试方法具有一致性,且实验时间缩短近40%。分析认为:改进的压力衰减法能够模拟地层高温环境,原理清楚,结果可靠,新方法弥补了常规压力衰减法工作流体无法高效注入岩心的不足,提高了测试精度,缩短了实验时间,对优化致密油气藏储层损害评价方法具有借鉴意义。Abstract: Ultra-tight gas reservoirs are characteristic with deep buried depth, high formation temperature and strong potential fluids sensitivity damage, and the ultra-low permeability of matrix lead to the industry standard method not being applied to evaluate the formation fluids sensitivity damage. In this study, sandstone cores from ultra-tight gas layers were selected. Meanwhile, modified pressure decay method was proposed. In addition, the normal pressure decay method and modified steady-state fluid sensitivity test method were used to evaluate the water sensitive damage degree as a comparison. The results indicates that the water sensitivity damage degree obtained by the normal pressure decay method is middle to weak, the water sensitivity damage degree obtained by the modified pressure decay method is middle to strong, which is consistent with the modified steady-state fluid sensitivity test method. Moreover, the experiment time was reduced by nearly 40%. The analysis showed that the modified pressure decay method could simulate the stratum high temperature environment with the clear principle and obtained reliable result. The new method makes up for the deficiency that the normal pressure decay method cannot efficiently inject the working fluid into the core, improves the testing accuracy and shorts the experimental time, and has reference significance for the damage evaluation method of ultra-tight oil and gas reservoir.
-
表 1 实验岩样基础物性
编号 长度/cm 直径/cm 孔隙度/% 渗透率/mD 孔隙体积/cm3 A1-1 5.404 2.486 3.59 0.005 89 1.02 A1-2 5.172 2.471 3.18 0.001 41 0.79 表 2 模拟地层水配方
矿物类型 NaHCO3 Na2SO4 NaCl KCl MgCl2 CaCl2 总矿化度 含量/(mg·L−1) 563.24 649.22 185 905.74 12 441.50 3524.50 6153.32 209 237.52 表 3 常规压力衰减法液测岩心水敏评价结果
编号 流体类型 地层水 次地层水 蒸馏水 水敏指数 水敏程度 A1-1 Tr(min) 240.83 399.68 430.65 0.44 中等偏弱 A1-2 Tr(min) 238.74 419.66 439.26 0.46 中等偏弱 表 4 改进的稳态流体敏感性方法评价水敏损害程度
岩心编号 孔隙度/% Ka/mD 水敏指数 水敏程度 A1-1 3.59 0.005 89 0.51 中等偏强 A1-2 3.18 0.014 08 0.52 中等偏强 表 5 改进的压力衰减法液测岩心水敏评价结果
编号 流体类型 地层水 次地层水 蒸馏水 水敏指数 水敏程度 A1-1 Tr(min) 130.08 253.62 274.73 0.53 中等偏强 A1-2 Tr(min) 119.62 245.94 269.14 0.56 中等偏强 -
[1] 滕学清,张洁,朱金智,等. 迪那3区块致密砂岩气藏损害机理及储层保护技术[J]. 钻井液与完井液,2015,32(1):18-21.TENG Xueqing, ZHANG Jie, ZHU Jinzhi, et al. Permeability impairment and reservoir protection for tight sand gas reservoir in block Dina-3[J]. Drilling Fluid & Completion Fluid, 2015, 32(1):18-21. [2] 朱华银,蒋德生,安来志,等. 川西地区九龙山构造砾岩储层敏感性实验分析[J]. 天然气工业,2012,32(9):40-43.ZHU Huayin, JIANG Desheng, ANLaizhi, et al. An experimental analysis of sensitivity of the Jiulongshan conglomerate reservoirs in west Sichuan basin[J]. Natural Gas Industry, 2012, 32(9):40-43. [3] 李宁, 王有伟, 张绍俊. 低渗透致密砂岩气藏保护技术研究与应用[J]. 钻井液与完井液,2016,33(4):14-19.WANG Fuhua. Study on water block in tight sandstone gas reservoirs and solutions thereof[J]. Driuing Fluid & Completion Fluid, 2016, 33(4):14-19. [4] QUTOB H, BYRNE M. Formation damage in tight gas reservoirs[C]//SPE European Formation Damage Conference and Exhibition. Budapest: SPE, 2015: SPE-174237-MS. [5] HUANG Weian , LEI Ming , TENG Xueqing. Damaging mechanism of tight sandstone gas reservoirs and optimization of drilling fluids for reservoir protection[J]. Drilling Fluid & Completion Fluid, 2018, 35(4):33-38. [6] 康毅力,张晓磊,游利军,等. 压力衰减法在大牛地致密储层流体敏感性评价中的应用[J]. 钻井液与完井液,2013,30(6):81-84.KANG Yili, ZHANG Xiaolei, YOU Lijun, et al. A new method to evaluate fluid sensitivity of tight reservoir:pressure decay analysis[J]. Drilling Fluids & Completion Fluid, 2013, 30(6):81-84. [7] 任茂,苏俊霖,欧彪,等. 压力衰减法在评价储层流体敏感性中的应用[J]. 钻井液与完井液,2013,30(3):41-42.REN Mao, SU Junlin, OU Biao, et al. Application on pressure attenuation method in evaluation of reservoir sensitivity[J]. Drilling Fluids & Completion Fluid, 2013, 30(3):41-42. [8] 康毅力,张杜杰,游利军,等. 塔里木盆地超深致密砂岩气藏储层流体敏感性评价[J]. 石油与天然气地质,2018,39(4):738-748.KANG Yili, ZHANG Dujie, YOU Lijun, et al. Fluid sensitivity evaluation of ultra-deep tight sandstone gas reservoirs, Tarim basin[J]. Oil & Gas Geology, 2018, 39(4):738-748. [9] 游利军, 康毅力, 杜新龙, 等.一种确定致密岩心损害的方法:CN200910058286.8[P].2012-06-20.YOU Lijun, KANG Yili, DU Xinlong, et al.A method to determine the damage of tight cores: CN200910058286.8[P]. 2012-06-20. [10] 张昌铎,康毅力,游利军,等. 深层高温裂缝性致密砂岩气藏流体敏感性实验研究[J]. 钻采工艺,2010,33(4):83-86.ZHANG Changduo, KANG Yili, YOU Lijun, et al. Experimental research on fluid sensitivity of fractured tight sandstone gas reservoir with deep buried and high temperature[J]. Drilling & Production Technology, 2010, 33(4):83-86. [11] 杜新龙. 低渗透微裂缝砂岩油层损害评价方法及损害机理研究[D]. 成都:西南石油大学,2009.DU Xinlong. The evaluation methods and damage mechanism of ultra-tight fractured sandstone oil reservoirs[D]. Chengdu: Southwest Petroleum University, 2009. [12] 俞杨烽,康毅力,游利军. 水膜厚度变化—特低渗透砂岩储层盐敏性的新机理[J]. 重庆大学学报:自然科学版,2011,34(4):67-71.YU Yangfeng, KANG Yili, YOU Lijun. Thickness change of water film-new mechanism of salt sensitivity in extra-low permeability sandstone reservoirs[J]. Journal of Chongqing University, 2011, 34(4):67-71.