留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温致密砂砾岩储层盐敏及盐析损害机理

何瑞兵 谭伟雄 白瑞婷 康毅力 李鸿儒 李鑫磊 游利军

何瑞兵,谭伟雄,白瑞婷,等. 高温致密砂砾岩储层盐敏及盐析损害机理[J]. 钻井液与完井液,2024,41(2):155-165 doi: 10.12358/j.issn.1001-5620.2024.02.003
引用本文: 何瑞兵,谭伟雄,白瑞婷,等. 高温致密砂砾岩储层盐敏及盐析损害机理[J]. 钻井液与完井液,2024,41(2):155-165 doi: 10.12358/j.issn.1001-5620.2024.02.003
HE Ruibing, TAN Weixiong, BAI Ruiting, et al.Formation damage in high temperature dense glutenite reservoirs by salt sensitivity and salt precipitation[J]. Drilling Fluid & Completion Fluid,2024, 41(2):155-165 doi: 10.12358/j.issn.1001-5620.2024.02.003
Citation: HE Ruibing, TAN Weixiong, BAI Ruiting, et al.Formation damage in high temperature dense glutenite reservoirs by salt sensitivity and salt precipitation[J]. Drilling Fluid & Completion Fluid,2024, 41(2):155-165 doi: 10.12358/j.issn.1001-5620.2024.02.003

高温致密砂砾岩储层盐敏及盐析损害机理

doi: 10.12358/j.issn.1001-5620.2024.02.003
基金项目: 中海石油(中国)有限公司重大科技专项“渤海油田上产4000万吨新领域勘探关键技术”(CNOOC-KJ 135 ZDXM36 TJ 08 TJ)。
详细信息
    作者简介:

    何瑞兵,高级工程师,2002年毕业于西南石油学院油气井工程专业,现在从事钻井工程设计、钻井液及储层保护技术研究工作。电话 (022)66501112;E-mail:herb@cnooc.com.cn

  • 中图分类号: TE258

Formation Damage in High Temperature Dense Glutenite Reservoirs by Salt Sensitivity and Salt Precipitation

  • 摘要: 中国渤海湾盆地广泛分布特低渗致密砂砾岩油气藏,与常规砂岩储层相比,致密砂砾岩储层具有黏土矿物丰富,溶蚀孔隙及微裂缝发育且非均质性强等特点,注入流体侵入容易诱发储层损害,堵塞孔喉,降低储层渗流能力,阻碍油气井稳产。以BZ19-6井区砂砾岩储层井下岩心为例,分别依据行业标准法和高温高回压稳态法开展储层盐敏损害室内实验评价,基于扫描电镜分析了敏感性矿物和盐类矿物的类型及赋存特征。实验结果表明:储层盐敏程度为中等偏强~强;岩心渗透率越低,盐析对储层的孔隙度和渗透率的损害程度越大,建议对于渗透率小于0.1 mD、储层温度高于100 ℃的致密岩心,推荐应用高温高回压稳态法评价储层流体敏感性更具优势。研究区黏土矿物以丝片/丝缕状伊利石、蚀变高岭石及伊/蒙间层矿物为主,主要呈栉壳式、分散充填、搭桥等方式赋存于溶蚀孔隙,是储层盐敏的主要因素。高温环境地层水加速蒸发,易导致近井带盐析,盐类矿物主要为钾盐和石盐,赋存于矿物颗粒表面和孔隙壁面易堵塞微细孔喉;地层水静态蒸发可溶盐析出堵塞致密孔喉、动态驱替盐晶运移堵塞喉道及盐析弱化岩石力学强度,导致微粒运移是致密砂砾岩盐析损害的主要机理。推荐使用KCl-饱和盐水聚磺钻井液和两性离子聚合物钻井液技术,通过降低钻井液侵入和抑制盐类在钻井液中的结晶和成核,从而降低储层盐敏损害。

     

  • 图  1  高温高回压稳态法流体敏感性评价实验装置

    图  2  行业标准法评价储层盐敏性实验结果

    图  3  高温高回压稳态法评价储层盐敏性实验结果

    图  4  盐析对致密砂砾岩物性参数的影响

    图  5  BZ19-6-X井和BZ19-6-X井砂砾岩储层段敏感性矿物赋存位置和产状

    图  6  BZ19-6-X井砂砾岩储层盐敏实验后矿物分散充填孔隙

    图  7  孔店组砂砾岩结晶盐在孔喉内部的赋存位置和形态

    图  8  砂砾岩储层中常见自生黏土矿物

    图  9  致密砂砾岩储层盐析损害模式

    图  10  致密砂岩气井生产过程中多层次盐析示意图[15]

    表  1  BZ19-6井区孔店组砂砾岩储层流体敏感性评价实验岩心基础物性参数

    井号深度/m长度/mm直径/mm气测渗透率/mD气测孔隙度/%实验方法
    BZ19-6-C3858.2842.1125.011.029.90行业标准
    70 ℃
    BZ19-6-C3858.2837.1525.141.099.90
    BZ19-6-C3858.2840.3225.160.808.04
    BZ19-6-X4429.5840.9025.000.265.15高温高回压稳态法140 ℃
    BZ19-6-X4429.4538.1025.200.246.21
    BZ19-6-X4429.7138.1025.100.296.91
    BZ19-6-X4429.7140.0525.120.276.85
    下载: 导出CSV

    表  2  BZ19-6-X井模拟地层水分析 (mg/L)

    井号Na+K+Mg2+Ca2+ClSO42−HCO3−CO32−
    BZ19-6-C20 276.1715 214.15299.93180.7541 097.044755.1310 271.13404.83
    BZ19-6-X12 260.45146 247.47106.59175.869039.351190.2425 452.66501.14
    下载: 导出CSV
  • [1] 李换浦. 渤海湾盆地砂砾岩储层特征研究[J]. 西部探矿工程,2022,34(3):86-88.

    LI Huanpu. The characteristics study of sandy conglomerate reservoirs in the Bohai bay basin[J]. West-China Exploration Engineering, 2022, 34(3):86-88.
    [2] 国建英,齐雪宁,侯连华,等. 渤海湾盆地特低渗—致密砂(砾)岩天然气成因及成藏模式[J]. 天然气地球科学,2022,33(2):181-194.

    GUO Jianying, QI Xuening, HOU Lianhua, et al. Origin and accumulation model of ultra-low permeability-tight sandstone (gravel) gas in Bohai bay basin[J]. Natural Gas Geoscience, 2022, 33(2):181-194.
    [3] 张铜耀,郝鹏. 渤中凹陷深层特低孔特低渗砂砾岩储层储集空间精细表征[J]. 地质科技通报,2020,39(4):117-124.

    ZHANG Tongyao, HAO Peng. Fine characterization of the reservoir space in deep ultra-low porosity and ultra-low permeability glutenite in Bozhong sag[J]. Bulletin of Geological Science and Technology, 2020, 39(4):117-124.
    [4] 徐同台, 熊友明. 保护油气层技术[M]. 第4版. 北京: 石油工业出版社, 2016.

    XU Tongtai, XIONG Youming. Technology for protecting oil and gas reservoirs[M]. 4th ed. Beijing: Petroleum Industry Press, 2016.
    [5] 俞杨烽,康毅力,游利军. 水膜厚度变化——特低渗透砂岩储层盐敏性的新机理[J]. 重庆大学学报,2011,34(4):67-71.

    YU Yangfeng, KANG Yili, YOU Lijun. Thickness change of water film-new mechanism of salt sensitivity in extra-low permeability sandstone reservoirs[J]. Journal of Chongqing University, 2011, 34(4):67-71.
    [6] 崔国栋,任韶然,张亮,等. 高温气藏地层水蒸发盐析规律及对产能的影响[J]. 石油勘探与开发,2016,43(5):749-757.

    CUI Guodong, REN Shaoran, ZHANG Liang, et al. Formation water evaporation induced salt precipitation and its effect on gas production in high temperature natural gas reservoirs[J]. Petroleum Exploration and Development, 2016, 43(5):749-757.
    [7] 黎明,郭建春,刘彧轩,等. 塔里木致密裂缝性储层钻井液侵入实验研究[J]. 钻井液与完井液,2023,40(5):586-593. doi: 10.12358/j.issn.1001-5620.2023.05.006

    LI Ming, GUO Jianchun, LIU Yuxuan, et al. Experimental Study on mud intrusion in Tarim tightly fractured reservoirs[J]. Drilling Fluid & Completion Fluid, 2023, 40(5):586-593. doi: 10.12358/j.issn.1001-5620.2023.05.006
    [8] 高书阳,汤志川,宋碧涛,等. 川西断缝体储层封堵固壁钻井液技术[J]. 钻井液与完井液,2023,40(5):556-562. doi: 10.12358/j.issn.1001-5620.2023.05.002

    GAO Shuyang, TANG Zhichuan, SONG Bitao, et al. Drilling fluid technology for plugging and strengthening the borehole wall of wells penetrating the faulted fractured reservoirs in west Sichuan[J]. Drilling Fluid & Completion Fluid, 2023, 40(5):556-562. doi: 10.12358/j.issn.1001-5620.2023.05.002
    [9] 康毅力,张杜杰,游利军,等. 塔里木盆地超深致密砂岩气藏储层流体敏感性评价[J]. 石油与天然气地质,2018,39(4):738-748.

    KANG Yili, ZHANG Dujie, YOU Lijun, et al. Fluid sensitivity evaluation of ultra-deep tight sandstone gas reservoirs, Tarim basin[J]. Oil & Gas Geology, 2018, 39(4):738-748.
    [10] SCHEMBRE J M, KOVSCEK A R. Mechanism of formation damage at elevated temperature[J]. Journal of Energy Resources Technology, 2005, 127(3):171-180. doi: 10.1115/1.1924398
    [11] MUNEER R, HASHMET M R, POURAFSHARY P. Predicting the critical salt concentrations of monovalent and divalent brines to initiate fines migration using DLVO modeling[J]. Journal of Molecular Liquids, 2022, 352:118690. doi: 10.1016/j.molliq.2022.118690
    [12] MUNEER R, HASHMET M R, POURAFSHARY P. Fine migration control in sandstones: surface force analysis and application of DLVO theory[J]. ACS Omega, 2020, 5(49):31624-31639. doi: 10.1021/acsomega.0c03943
    [13] 游利军,王哲,康毅力,等. 致密砂岩孔渗对盐析的响应实验研究[J]. 天然气地球科学,2018,29(6):866-872.

    YOU Lijun, WANG Zhe, KANG Yili, et al. Experimental investigation of pore-permeability characteristics change caused by salt precipitation in tight sandstone gas reservoirs[J]. Natural Gas Geoscience, 2018, 29(6):866-872.
    [14] 赵杏媛, 何东博. 黏土矿物与油气勘探开发[M]. 北京: 石油工业出版社, 2016.

    ZHAO Xingyuan, HE Dongbo. Clay mineral and application in oil and gas exploration and development[M]. Beijing: Petroleum Industry Press, 2016.
    [15] NOIRIEL C, RENARD F, DOAN M L, et al. Intense fracturing and fracture sealing induced by mineral growth in porous rocks[J]. Chemical Geology, 2010, 269(3/4):197-209.
    [16] EGBERTS P J, NAIR R, TWERDA A. Salt precipitation in the near well bore region of gas wells[C]//SPE International Conference and Exhibition on Formation Damage Control. Lafayette, Louisiana, USA: SPE, 2018: SPE-189541-MS.
    [17] ZHANG D J, KANG Y L, SELVADURAI A P S, et al. Experimental investigation of the effect of salt precipitation on the physical and mechanical properties of a tight sandstone[J]. Rock Mechanics and Rock Engineering, 2020, 53(10):4367-4380. doi: 10.1007/s00603-019-02032-y
    [18] VAN DORP Q T, SLIJKHUIS M, ZITHA P L J. Salt precipitation in gas reservoirs[C]//8th European Formation Damage Conference. Scheveningen, The Netherlands: SPE, 2009: SPE-122140-MS.
    [19] MIRI R, HELLEVANG H. Salt precipitation during CO2 storage-a review[J]. International Journal of Greenhouse Gas Control, 2016, 51:136-147. doi: 10.1016/j.ijggc.2016.05.015
    [20] 徐晨阳,黄志宇,门欣,等. 高密度钾聚磺钻井液体系受CO2污染机理研究[J]. 应用化工,2023,52(2):480-484.

    XU Chenyang, HUANG Zhiyu, MEN Xin, et al. Study on the mechanism of high-density potassium polysulfonate drilling fluid system contaminated by CO2[J]. Applied Chemical Industry, 2023, 52(2):480-484.
    [21] 蒋官澄,贺垠博,崔物格,等. 基于盐响应型两性离子聚合物的饱和盐水钻井液[J]. 石油勘探与开发,2019,46(2):385-390.

    JIANG Guancheng, HE Yinbo, CUI Wuge, et al. A saturated saltwater drilling fluid based on salt-responsive polyampholytes[J]. Petroleum Exploration and Development, 2019, 46(2):385-390.
    [22] 刘腾蛟,于洋,曾祥禹,等. 吉林油田长探1井三开钻井液技术[J]. 钻井液与完井液,2021,38(4):479-485.

    LIU Tengjiao, YU Yang, ZENG Xiangyu, et al. Drilling fluid technology for the third interval of well changtan-1 in Jilin oilfield[J]. Drilling Fluid & Completion Fluid, 2021, 38(4):479-485.
    [23] 李佳. 两性离子聚合物抑制剂及抑制性水基钻井液研究[D]. 成都: 西南石油大学, 2017.

    LI Jia. Study on zwitterion polymer inhibitor and inhibitory water-based drilling fluid[D]. Chengdu: Southwest Petroleum University, 2017.
    [24] 周有祯. 两性离子聚合物钻井液降滤失剂的合成研究[D]. 成都: 西南石油大学, 2016.

    ZHOU Youzhen. Study on synthesis of zwitterion polymer filtration reducer for drilling fluid[D]. Chengdu: Southwest Petroleum University, 2016.
    [25] 张浩,张斌,徐国金. 两性离子聚合物 HRH 钻井液在临盘油田的应用[J]. 石油钻探技术,2014,42(2):57-63.

    ZHANG Hao, ZHANG Bin, XU Guojin. Applications of zwitterionic polymer HRH drilling fluid in Linpan oilfield[J]. Petroleum Drilling Techniques, 2014, 42(2):57-63.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  16
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-14
  • 修回日期:  2023-11-24
  • 刊出日期:  2024-04-02

目录

    /

    返回文章
    返回