留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抗超高温220 ℃聚合物水基钻井液技术

刘锋报 孙金声 刘敬平 黄贤斌 孟旭

刘锋报,孙金声,刘敬平,等. 抗超高温220 ℃聚合物水基钻井液技术[J]. 钻井液与完井液,2024,41(2):148-154 doi: 10.12358/j.issn.1001-5620.2024.02.002
引用本文: 刘锋报,孙金声,刘敬平,等. 抗超高温220 ℃聚合物水基钻井液技术[J]. 钻井液与完井液,2024,41(2):148-154 doi: 10.12358/j.issn.1001-5620.2024.02.002
LIU Fengbao, SUN Jinsheng, LIU Jingping, et al.A polymer water based drilling fluid for 220 ℃ bottomhole temperature[J]. Drilling Fluid & Completion Fluid,2024, 41(2):148-154 doi: 10.12358/j.issn.1001-5620.2024.02.002
Citation: LIU Fengbao, SUN Jinsheng, LIU Jingping, et al.A polymer water based drilling fluid for 220 ℃ bottomhole temperature[J]. Drilling Fluid & Completion Fluid,2024, 41(2):148-154 doi: 10.12358/j.issn.1001-5620.2024.02.002

抗超高温220 ℃聚合物水基钻井液技术

doi: 10.12358/j.issn.1001-5620.2024.02.002
基金项目: 国家自然科学基金基础科学中心项目“超深特深层油气钻采流动调控”(52288101)。
详细信息
    作者简介:

    刘锋报,高级工程师,在读博士研究生,1985年生,毕业于中国地质大学(北京)化学工程专业,目前从事深井钻完井液技术研究与管理工作。E-mail:liufengbao100@126.com

  • 中图分类号: TE254.3

A Polymer Water Based Drilling Fluid for 220 ℃ Bottomhole Temperature

  • 摘要: 我国深层油气资源丰富,其高效开发对保障国家能源安全具有重大意义。钻井液是深部地层钻探的关键,但目前常规聚合物钻井液的抗温能力普遍低于220 ℃,且盐会大幅降低钻井液性能,钻探过程中往往由于钻井液失效引发安全事故,对深层油气开发造成重大损失。针对钻井液高温高盐条件下性能恶化的难题,合成了具有协同作用的抗高温两性离子聚合物和抗高温阴离子聚合物,通过高强度的网架结构调控钻井液流变性;合成抗超高温高效封堵剂来提高钻井液封堵性能和滤失性能,封堵泥饼和砂床,阻止压力传递。以抗高温两性离子聚合物、抗高温阴离子聚合物和抗超高温高效封堵剂为核心处理剂,构建了一套抗超高温220 ℃的聚合物水基钻井液体系,并评价了该钻井液的性能。实验结果表明,该钻井液具有良好的流变滤失性、沉降稳定性、封堵性和润滑性,其高温高压滤失量仅为9.6 mL,高温高压下仍保持黏度和切力稳定,直立老化72 h沉降因子仅为0.5113,砂床侵入深度仅为6 mm,老化后润滑系数和泥饼黏滞系数分别为0.1224和0.0875。该钻井液具有良好的抗温性能和稳定性,对深部油气的开发具有重要意义。

     

  • 图  1  抗高温两性离子聚合物的红外光谱

    图  2  抗高温阴离子聚合物的红外光谱

    图  3  聚合物协同增黏机理示意图

    图  4  钻井液复数模量与剪切应力的关系

    图  5  抗超高温高效封堵剂分子结构

    图  6  抗超高温高效封堵剂SEM图像

    图  7  抗超高温高效封堵剂红外光谱

    图  8  抗超高温高效封堵剂悬浮液的   压力传递实验(240 ℃、16 h)

    图  9  高温高压滤失泥饼

    图  10  抗超高温聚合物水基钻井液在高温高压流变仪表面的黏附情况

    图  11  常规聚磺钻井液高温高压  流变仪表面的黏附情况

    图  12  长期沉降稳定性

    表  1  膨润土加量对体系性能的影响

    钻井液配方实验条件AV/mPa·sPV/mPa·sYP/Pa
    6%两性离子聚合物老化前50.045.05.0
    老化后29.028.01.0
    6%阴离子聚合物老化前54.548.06.5
    老化后33.032.50.5
    4%两性离子聚合物+
    2%阴离子聚合物
    老化前52.046.06.0
    老化后45.041.04.0
      注:老化条件为220 ℃,老化72 h。
    下载: 导出CSV

    表  2  抗超高温220 ℃聚合物钻井液流变滤失性能

    条件AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    Gel/
    Pa/Pa
    FLAPI/
    mL
    FLHTHP/
    mL(220 ℃)
    pH
    老化前53.0476.04/60.29.38
    220 ℃、16 h47.0425.03/42.29.68.14
    220 ℃、24 h48.5435.53/41.210.68.13
    下载: 导出CSV

    表  3  钻井液经长时间老化后的流变滤失性能

    条件AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    Gel/
    Pa/Pa
    FLAPI/
    mL
    FLHTHP/mL
    (220 ℃)
    pH
    220 ℃老化24 h48.5435.53/41.210.68.13
    重新加药后62.5557.55/508.79
    继续老化72 h52.0466.03/53.213.48.74
    下载: 导出CSV

    表  4  抗超高温聚合物水基钻井液在高矿化度污染下的流变、滤失性能

    污染类型条件AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    Gel/
    Pa/Pa
    FLAPI/
    mL
    FLHTHP/mL
    (220 ℃)
    pH
    2000 mg/L Ca2+老化前53.0476.04/5010.14
    220 ℃、16 h54.0495.06/81.810.49.24
    190 000 mg/L Cl-老化前54.0459.03/60.210.25
    220 ℃、16 h47.5407.51/21.49.48.79
    2000 mg/L Ca2++
    190 000 mg/L Cl-
    老化前53.5458.53/5010.12
    220 ℃、16 h50.0428.07/81.811.69.12
    下载: 导出CSV

    表  5  抗超高温聚合物水基钻井液高温高压流变性数据

    实验条件AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    Gel/
    Pa/Pa
    120 ℃×93 MPa31.827.64.01.2/2.5
    140 ℃×108 MPa29.126.22.81.2/1.7
    165 ℃×130 MPa26.424.51.81.2/1.4
    180 ℃×139 MPa24.822.81.91.2/1.8
    200 ℃×154 MPa22.820.91.81.3/1.9
    220 ℃×169 MPa22.420.51.81.3/1.9
      注:样品升温至120 ℃开始测试。
    下载: 导出CSV

    表  6  常规聚磺钻井液高温高压流变性数据

    实验条件AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    Gel/
    Pa/Pa
    120 ℃×93 MPa18.614.73.71.0/3.0
    140 ℃×108 MPa17.414.33.01.2/5.0
    165 ℃×130 MPa16.513.13.32.6/8.1
    180 ℃×139 MPa16.512.04.33.9/9.6
    200 ℃×154 MPa17.610.76.67.0/10.7
    220 ℃×169 MPa22.09.012.514.8/16.2
      注:样品升温至120 ℃开始测试。
    下载: 导出CSV
  • [1] 吴晓智,柳庄小雪,王建,等. 我国油气资源潜力、分布及重点勘探领域[J]. 地学前缘,2022,29(6):146-155.

    WU Xiaozhi, LIUZHUANG Xiaoxue, WANG Jian, et al. Petroleum resource potential, distribution and key exploration fields in China[J]. Earth Science Frontiers, 2022, 29(6):146-155.
    [2] 李阳,薛兆杰,程喆,等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探,2020,25(1):45-57.

    LI Yang, XUE Zhaojie, CHENG Zhe, et al. Progress and development directions of deep oil and gas exploration and development in China[J]. China Petroleum Exploration, 2020, 25(1):45-57.
    [3] 王中华. 国内钻井液技术现状与发展建议[J]. 石油钻探技术,2023,51(4):114-123.

    WANG Zhonghua. Current situation and development suggestions for drilling fluid technologies in China[J]. Petroleum Drilling Techniques, 2023, 51(4):114-123.
    [4] CHU Q, LUO P Y, ZHAO Q F, et al. Application of a new family of organosilicon quadripolymer as a fluid loss additive for drilling fluid at high temperature[J]. Journal of Applied Polymer Science, 2013, 128(1):28-40. doi: 10.1002/app.38096
    [5] 陈新勇,付潇,李亮亮,等. 廊固凹陷安探地区复杂深井钻井关键技术[J]. 石油机械,2021,49(12):36-41.

    CHEN Xinyong,FU Xiao,LI Liangliang,et al. Key technologies for complex deep well drilling in Antan area of Langgu sag[J]. China Petroleum Machinery, 2021, 49(12):36-41.
    [6] 邢星,刘凤和,程长坤,等. 柴达木盆地复杂深井安全钻井技术[J]. 石油科技论坛,2022,41(2):69-73. doi: 10.7202/1086925ar

    XING Xing, LIU Fenghe, CHENG Changkun, et al. Drilling safety technology for complicated deep wells in Qaidam basin[J]. Oil Forum, 2022, 41(2):69-73. doi: 10.7202/1086925ar
    [7] 孙金声,蒋官澄. 钻井工程“血液”——钻完井液技术的发展现状与趋势[J]. 前瞻科技,2023,2(2):62-74.

    SUN Jinsheng, JIANG Guancheng. The blood of drilling engineering - development status and trends of drilling and completion fluid technology[J]. Science and Technology Foresight, 2023, 2(2):62-74.
    [8] 郑永超,忽建泽,肖俊峰,等. 抗盐、抗高温钻井液在HV027-8井的应用[J]. 石油地质与工程,2016,30(1):115-117.

    ZHENG Yongchao, HU Jianze, XIAO Junfeng, et al. Application of salt and high temperature resistant drilling fluid in well HV027-8[J]. Petroleum Geology and Engineering, 2016, 30(1):115-117.
    [9] 徐江,吴宇,安智伟,等. 抗高温非磺化半饱和盐水钻井液研究与应用[J]. 钻井液与完井液,2023,40(2):176-183.

    XU Jiang, WU Yu, AN Zhiwei, et al. Study and application of high-temperature resistant non-sulfonated semi-saturated salt water drilling fluid[J]. Drilling Fluid & Completion Fluid, 2023, 40(2):176-183.
    [10] 刘畅,许洁,冉恒谦. 干热岩抗高温环保水基钻井液体系[J]. 钻井液与完井液,2021,38(4):412-422.

    LIU Chang, XU Jie, RAN Hengqian. An environmentally friendly high temperature water based drilling fluid for Hot-Dry-Rock well drilling[J]. Drilling Fluid & Completion Fluid, 2021, 38(4):412-422.
    [11] 董晓强,方俊伟,李雄,等. 顺北4XH井抗高温高密度钻井液技术研究及应用[J]. 石油钻采工艺,2022,44(2):161-167.

    DONG Xiaoqiang, FANG Junwei, LI Xiong, et al. Research and application of a high-temperature high-density drilling fluid system in Well Shunbei-4XH[J]. Oil Drilling & Production Technology, 2022, 44(2):161-167.
    [12] 李小林,李剑华,杨红滨,等. 基于热增黏共聚物的高密度水泥浆高温稳定剂[J]. 钻井液与完井液,2022,39(1):76-81.

    LI Xiaolin, LI Jianhua, YANG Hongbin, et al. Study on thermally viscosifying copolymer as a high temperature stabilizer for high density cement slurries[J]. Drilling Fluid & Completion Fluid, 2022, 39(1):76-81.
    [13] 李科,赵怀珍,李秀灵,等. 抗高温高性能水基钻井液及其在顺北801X井的应用[J]. 钻井液与完井液,2022,39(3):279-284.

    LI Ke, ZHAO Huaizhen, LI Xiuling, et al. The development and application of High-Temperature and High-Performance water base drilling fluid on the well Shunbei 801X[J]. Drilling Fluid & Completion Fluid, 2022, 39(3):279-284.
    [14] 张雁,屈沅治,张志磊,等. 超高温水基钻井液技术研究现状及发展方向[J]. 油田化学,2022,39(3):540-547.

    ZHANG Yan, QU Yuanzhi, ZHANG Zhilei, et al. Research progress and development direction of technologies for water-based drilling fluid in ultra-high temperature[J]. Oilfield Chemistry, 2022, 39(3):540-547.
    [15] 刘锋报,孙金声,王建华. 国内外深井超深井钻井液技术现状及发展趋势[J]. 新疆石油天然气,2023,19(2):34-39.

    LIU Fengbao, SUN Jinsheng, WANG Jianhua. A global review of technical status and development trend of drilling fluids for deep and Ultra-Deep wells[J]. Xinjiang Oil & Gas, 2023, 19(2):34-39.
    [16] 黄贤斌,孙金声,吕开河,等. 抗超高温高密度聚合物饱和盐水钻井液体系[J]. 石油勘探与开发,2023,50(5):1056-1064.

    HUANG Xianbin, SUN Jinsheng, LYU Kaihe, et al. A high-temperature resistant and high-density polymeric saturated brine-based drilling fluid[J]. Petroleum Exploration and Development, 2023, 50(5):1056-1064.
    [17] SUN Y W, SUN J S, LI L, et al. Development of High-Temperature and High-Mineralization-Resistant adaptive plugging agent and its performance evaluation[J]. Energy & Fuels, 2023, 37(13):8999-9010.
    [18] 高伟,李银婷,余福春,等. 抗超高温水基钻井液用聚合物降滤失剂的研制[J]. 钻井液与完井液,2021,38(2):146-151,157.

    GAO Wei, LI Yinting, YU Fuchun, et al. Development of a polymer filter loss reducer for Ultra-High temperature water base drilling fluids[J]. Drilling Fluid & Completion Fluid, 2021, 38(2):146-151,157.
    [19] 邢林庄,袁玥辉,叶成,等. 抗高温抗复合盐支链型聚合物降滤失剂的合成及其性能[J]. 钻井液与完井液,2023,40(6):703-710.

    XING Linzhuang, YUAN Yuehui, YE Cheng, et al. Synthesis and evaluation of a high temperature salt-resistant chain polymer filter loss reducer[J]. Drilling Fluid & Completion Fluid, 2023, 40(6):703-710.
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  446
  • HTML全文浏览量:  101
  • PDF下载量:  367
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-27
  • 修回日期:  2024-01-10
  • 刊出日期:  2024-04-02

目录

    /

    返回文章
    返回

    欢迎订阅

    2025年《钻井液与完井液》,邮发代号为:18-423,编辑部不受理订阅业务。