留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

适用于万米深井的大温差水泥浆

刘景丽 刘平江 任强 刘岩 彭松 曹洪昌 张文阳 程小伟

刘景丽,刘平江,任强,等. 适用于万米深井的大温差水泥浆[J]. 钻井液与完井液,2023,40(6):778-786 doi: 10.12358/j.issn.1001-5620.2023.06.012
引用本文: 刘景丽,刘平江,任强,等. 适用于万米深井的大温差水泥浆[J]. 钻井液与完井液,2023,40(6):778-786 doi: 10.12358/j.issn.1001-5620.2023.06.012
LIU Jingli, LIU Pingjiang, REN Qiang, et al.A cement slurry for large temperature difference in wells of ten thousand meter depth[J]. Drilling Fluid & Completion Fluid,2023, 40(6):778-786 doi: 10.12358/j.issn.1001-5620.2023.06.012
Citation: LIU Jingli, LIU Pingjiang, REN Qiang, et al.A cement slurry for large temperature difference in wells of ten thousand meter depth[J]. Drilling Fluid & Completion Fluid,2023, 40(6):778-786 doi: 10.12358/j.issn.1001-5620.2023.06.012

适用于万米深井的大温差水泥浆

doi: 10.12358/j.issn.1001-5620.2023.06.012
基金项目: 中国石油天然气集团有限公司科技重大项目“万米超深层钻探关键工程技术与装备研制”(2023ZZ20)。
详细信息
    作者简介:

    刘景丽,高级工程师,1980年生,毕业于辽宁大学应用化学专业,现在主要从事油井水泥外加剂研发工作。电话 15076693117,E-mail:99692598@qq.com。

  • 中图分类号: TE256

A Cement Slurry for Large Temperature Difference in Wells of Ten Thousand Meter Depth

  • 摘要: 针对超深井长封固固井中,顶部底部水泥浆温差大,顶部低温段水泥浆超缓凝、水泥石强度发展缓慢的问题,采用水溶液聚合法制备了一种MgAl-EDTA-LDH(EDTA插层型水滑石)大温差早强剂,并配套形成了一套大温差水泥浆体系。实验结果表明,该大温差早强剂具有一定的缓凝效果,当其加量为2.0%,复配4.0%缓凝剂时,在240 ℃下其稠化时间可达509 min。该水泥浆在60 ℃养护1 d和30 ℃下养护6 d的抗压强度均大于7 MPa,最大温差为210 ℃。大温差早强剂在不影响水泥浆稠化可调性的前提下,有利于低温段水泥浆柱的强度发展,耐热温度达300 ℃以上,适用于大温差固井需求。

     

  • 图  1  大温差早强剂的XRD分析曲线

    图  2  大温差早强剂的热重曲线

    图  3  大温差早强剂与不同外加剂复配水泥浆稠化曲线

    图  4  大温差早强剂对水泥浆稠化时间的影响

    图  5  3-6#配方在60 ℃下的水泥石XRD测试

    图  6  3-6#配方在60 ℃下的水泥石TG测试

    图  7  3-6#配方在60 ℃下养护1 d的水泥石微观形貌图

    图  8  大温差早强剂作用机理示意图

    表  1  大温差早强剂与外加剂配伍性评价

    配方分散剂降失水剂缓凝剂实验条件t稠化/min
    1-1#DRS-1SG33SGH-9L140 ℃×70 MPa×70 min293
    1-2#USZDRF-3LGH-8L160 ℃×80 MPa×80 min393
    1-3#USZG33SGH-8L180 ℃×90 MPa×90 min275
    1-4#DRS-1SDRF-3LGH-9L205 ℃×130 MPa×70 min438
    1-5#USZG33SGH-9L215 ℃×130 MPa×110 min506
    1-6#ZF-1ZJ-5ZH-6240 ℃×110 MPa×130 min441
      注:水泥浆基础配方为100%水泥+30%石英砂+5%微硅+(0~2%)大温差早强剂+(0.4%~0.6%)分散剂+(1.5%~2.0%)降失水剂+(2%~4%)缓凝剂+1.5%高温悬浮稳定剂+H2O(W/S=0.44)。
    下载: 导出CSV

    表  2  大温差水泥浆综合性能评价

    配方缓凝剂
    ZH-6/%
    大温差
    早强剂/%
    流动度/
    cm
    FL/
    mL
    Δρ/
    g·cm−3
    nK/
    Pa·sn
    2-1#3.0024.0370.010.840.61
    2-2#3.00.124.0390.010.830.67
    2-3#3.00.524.0360.010.860.64
    2-4#3.01.023.5430.010.840.63
    2-5#3.02.023.0400.020.870.67
      注:水泥浆基础配方为100%水泥+30%石英砂+5%微硅+0.4%分散剂ZF-1+2%降失水剂ZJ-5 +1.5%高温悬浮稳定剂BH-ZW-1+H2O(W/S=0.44)。
    下载: 导出CSV

    表  3  大温差水泥浆性能评价实验

    配方实验条件ZH-6/
    %
    大温差
    早强剂/%
    t稠化/
    min
    3-1#120 ℃×60 MPa×60 min1.50.3308
    3-2#140 ℃×70 MPa×70 min1.60.6319
    3-3#160 ℃×80 MPa×80 min1.80.8364
    3-4#180 ℃×90 MPa×90 min2.51.2444
    3-5#205 ℃×130 MPa×70 min3.01.5438
    3-6#215 ℃×130 MPa×110 min3.51.8442
    3-7#240 ℃×110 MPa×130 min4.02.0509
      注:水泥浆基础配方:100%水泥+30%石英砂+5%微硅+0.4%分散剂ZF-1 +2%降失水剂ZJ-5+1.5%高温悬浮稳定剂BH-ZW-1+H2O(W/S=0.44)。
    下载: 导出CSV

    表  4  大温差水泥浆体系抗压强度测试结果

    配方静止温度下
    p24 h /MPa
    不同温差不同养护时间的水泥石抗压强度/MPa
    返高温度90 ℃返高温度60 ℃返高温度30 ℃
    1 d2 d3 d1 d2 d3 d6 d
    3-1#26.5919.2321.9822.3118.5419.6620.1315.21
    3-2#25.1315.6217.3419.7411.0313.2815.4512.65
    3-3#23.8713.5815.2716.8810.6711.3414.8610.54
    3-4#21.0312.1514.0716.919.6410.9112.748.75
    3-5#19.8912.3714.5114.8210.8911.3613.649.01
    3-6#20.4611.8713.9814.7511.3713.8414.218.69
    3-7#17.739.1210.1211.057.598.979.617.35
    下载: 导出CSV
  • [1] 王志刚,王稳石,张立烨,等. 万米科学超深井钻完井现状与展望[J]. 科技导报,2022,40(13):27-35.

    WANG Zhigang, WANG Wenshi, ZHANG Liye, et al. Present situation and prospect of drilling and completion of 10000 meter scientific ultra deep wells[J]. Science & Technology Review, 2022, 40(13):27-35.
    [2] 汪海阁,黄洪春,毕文欣,等. 深井超深井油气钻井技术进展与展望[J]. 天然气工业,2021,41(8):163-177.

    WANG Haige, HUANG Hongchun, BI Wenxin, et al. Deep and ultra-deep oil/gas well drilling technologies: progress and prospect[J]. Natural Gas Industry, 2021, 41(8):163-177.
    [3] 李阳,薛兆杰,程喆,等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探,2020,25(1):45-57.

    LI Yang, XUE Zhaojie, CHENG Zhe, et al. Progress and development directions of deep oil and gas exploration and development in China[J]. China Petroleum Exploration, 2020, 25(1):45-57.
    [4] 何立成,唐波. 准噶尔盆地超深井钻井技术现状与发展建议[J]. 石油钻探技术,2022,50(5):1-8.

    HE Licheng, TANG Bo. The up to date technologies of ultra-deep well drilling in Junggar basin and suggestions for further improvements[J]. Petroleum Drilling Techniques, 2022, 50(5):1-8.
    [5] 陈宗琦,刘湘华,白彬珍,等. 顺北油气田特深井钻井完井技术进展与发展思考[J]. 石油钻探技术,2022,50(4):1-10.

    CHEN Zongqi, LIU Xianghua, BAI Binzhen, et al. Technical progress and development consideration of drilling and completion engineering for ultra-deep wells in the Shunbei oil & gas field[J]. Petroleum Drilling Techniques, 2022, 50(4):1-10.
    [6] 杨明清,杨一鹏,卞玮,等. 俄罗斯超深井钻井进展及技术进步[J]. 石油钻采工艺,2021,43(1):15-20.

    YANG Mingqing, YANG Yipeng, BIAN Wei, et al. Drilling progress and technological improvement of ultra-deep wells in Russia[J]. Oil Drilling & Production Technology, 2021, 43(1):15-20.
    [7] 王明华,贺立勤,卓云,等. 川渝地区9000 m级超深超高温超高压地层安全钻井技术实践与认识[J]. 天然气勘探与开发,2023,46(2):44-50.

    WANG Minghua, HE Liqin, ZHUO Yun, et al. Practices and understandings on safe drilling technologies for 9000-m-level super deep and ultra high temperature and pressure strata, Sichuan-Chongqing area[J]. Natural Gas Exploration and Development, 2023, 46(2):44-50.
    [8] 刘军,沈向存,任丽丹,等. 塔里木盆地顺托果勒低隆区志留系隐蔽性圈闭识别与描述——高分辨率储层预测技术在S1井三维区的应用[J]. 石油实验地质,2012,34(S1):12-16.

    LIU Jun, SHEN Xiangcun, REN Lidan, et al. Recognition and description of Silurian concealed traps in Shuntuoguole low uplift region of Tarim basin: application of high resolution reservoir prediction technology in well zone S1[J]. Petroleum Geology & Experiment, 2012, 34(S1):12-16.
    [9] 于永金,夏修建,王治国,等. 深井、超深井固井关键技术进展及实践[J]. 新疆石油天然气,2023,19(2):24-33.

    YU Yongjin, XIA Xiujian, WANG Zhiguo, et al. Progress and application of the key technologies of deep and ultra-deep well cementing[J]. Xinjiang Oil & Gas, 2023, 19(2):24-33.
    [10] ZHANG W Y, MA Y, YANG R Y, et al. Effects of ethylene diamine tetraacetic acid and calcium nitrate on high-temperature cementing slurry in a large temperature difference environment[J]. Construction and Building Materials, 2023, 368:130387. doi: 10.1016/j.conbuildmat.2023.130387
    [11] WU W C, YU X R, HU A B, et al. Amphoteric retarder for long-standing cementing: preparation, properties and working mechanism[J]. Geoenergy Science and Engineering, 2023, 223:211524. doi: 10.1016/j.geoen.2023.211524
    [12] 冯德杰,杨启贞,曹成章. 油井水泥大温差缓凝剂的合成及性能研究[J]. 合成化学,2023,31(2):93-100.

    FENG Dejie, YANG Qizhen, CAO Chengzhang. Study on synthesis and properties of oil well cement retarder with large temperature difference[J]. Chinese Journal of Synthetic Chemistry, 2023, 31(2):93-100.
    [13] 张健,彭志刚,黄仁果,等. 一种大温差耐温耐盐缓凝剂的合成及性能评价[J]. 精细化工,2018,35(7):1240-1247.

    ZHANG Jian, PENG Zhigang, HUANG Renguo, et al. Synthesis and performance evaluation of a temperature resistance and salt tolerance retarder for large temperature difference cementing[J]. Fine Chemicals, 2018, 35(7):1240-1247.
    [14] 岳家平,徐翔,李早元,等. 高温大温差固井水泥浆体系研究[J]. 钻井液与完井液,2012,29(2):59-62.

    YUE Jiaping, XU Xiang, LI Zaoyuan, et al. Study on cement slurry system of high temperature and large temperature difference[J]. Drilling Fluid & Completion Fluid, 2012, 29(2):59-62.
    [15] 岳家平. 高温大温差低密度水泥浆体系研究与应用[D]. 成都: 西南石油大学, 2012.

    YUE Jiaping. Research and application of high temperature and large temperature difference low density cement slurry system[D]. Chengdu: Southwest Petroleum University, 2012.
    [16] 赵宝辉,邹建龙,刘爱萍,等. 新型缓凝剂BCR-260L性能评价及现场试验[J]. 石油钻探技术,2012,40(2):55-58.

    ZHAO Baohui, ZOU Jianlong, LIU Aiping, et al. Performance evaluation and application of novel retarder BCR-260L[J]. Petroleum Drilling Techniques, 2012, 40(2):55-58.
    [17] 胡晋军,宋海生,孟庆祥,等. 中高温缓凝剂BCR-260L在海上高温深井的应用[J]. 中国石油和化工标准与质量,2016,36(21):116-117.

    HU Jinjun, SONG Haisheng, MENG Qingxiang, et al. Application of middle and high temperature retarder BCR-260L in offshore high temperature deep wells[J]. China Petroleum and Chemical Standard and Quality, 2016, 36(21):116-117.
    [18] 张晓兵,李长坤,衡宣亦,等. 塔里木山前构造盐膏层固井难点与技术对策[J]. 西部探矿工程,2021,33(12):48-52.

    ZHANG Xiaobing, LI Changkun, HENG Xuanyi, et al. Difficulties and technical countermeasures in cementing salt-paste beds in Tarim Piedmont structure[J]. West-China Exploration Engineering, 2021, 33(12):48-52.
    [19] 费中明,刘鑫,张晔,等. 准噶尔盆地南缘超深井天X井尾管精细控压固井技术[J]. 钻井液与完井液,2023,40(3):391-396.

    FEI Zhongming, LIU Xin, ZHANG Ye, et al. Liner cementing through precise pressure control in the ultra-deep well Tian-X located at the southern margin of the Junggar basin[J]. Drilling Fluid & Completion Fluid, 2023, 40(3):391-396.
    [20] 于永金,丁志伟,张弛,等. 抗循环温度210 ℃超高温固井水泥浆[J]. 钻井液与完井液,2019,36(3):349-354.

    YU Yongjin, DING Zhiwei, ZHANG Chi, et al. A cement slurry used at ultra-high circulation temperature of 210 ℃[J]. Drilling Fluid & Completion Fluid, 2019, 36(3):349-354.
    [21] 焦少卿,何龙,郭小阳,等. 高温多功能防气窜水泥浆体系在四川盆地海相超深井中的成功应用[J]. 钻井液与完井液,2020,37(4):512-520.

    JIAO Shaoqing, HE Long, GUO Xiaoyang, et al. Successful application of high temperature multi-functional gas channeling preventing cement slurry in marine ultra deep wells in Sichuan basin[J]. Drilling Fluid & Completion Fluid, 2020, 37(4):512-520.
    [22] 王敬朋,熊友明,路宗羽,等. 超深井抗盐高密度固井水泥浆技术[J]. 钻井液与完井液,2021,38(5):634-640.

    WANG Jingpeng, XIONG Youming, LU Zongyu, et al. Study on salt-resistant high density cement slurry technology for ultra-deep wells[J]. Drilling Fluid & Completion Fluid, 2021, 38(5):634-640.
    [23] 魏浩光,常庆露,刘小刚,等. 水滑石插层降失水剂的制备和性能研究[J]. 化学工业与工程,2022,39(2):84-89.

    WEI Haoguang, CHANG Qinglu, LIU Xiaogang, et al. Preparation and performance of hydrotalcite intercalation fluid loss agent[J]. Chemical Industry and Engineering, 2022, 39(2):84-89.
    [24] 左天鹏,程小伟,吴昊,等. 一种长封固段固井用缓凝剂的制备及性能评价[J]. 精细化工,2022,39(3):618-626.

    ZUO Tianpeng, CHENG Xiaowei, WU Hao, et al. Preparation and performance evaluation of a kind of retarder used in long cementing interval[J]. Fine Chemicals, 2022, 39(3):618-626.
    [25] 马保国,谭洪波,董荣珍,等. 聚羧酸减水剂缓凝机理的研究[J]. 长江科学院院报,2008,25(6):93-95.

    MA Baoguo, TAN Hongbo, DONG Rongzhen, et al. Retarding mechanism of polycarboxylic acid type water-reducing agent[J]. Journal of Yangtze River Scientific Research Institute, 2008, 25(6):93-95.
    [26] 董文博,庄稼,马彦龙,等. 高温油井水泥缓凝剂聚2-丙烯酰胺基-2-甲基丙磺酸/苯乙烯磺酸钠/衣康酸的合成及缓凝效果[J]. 硅酸盐学报,2012,40(5):703-710.

    DONG Wenbo, ZHUANG Jia, MA Yanlong, et al. Terpolymerization and retardation of a high temperature cement retarder poly 2-acrylamido-2-methyl propane sulfonic acid/sodium styrene sulfonate/itaconic acid for oil well[J]. Journal of the Chinese Ceramic Society, 2012, 40(5):703-710.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  512
  • HTML全文浏览量:  205
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-19
  • 修回日期:  2023-09-02
  • 网络出版日期:  2023-11-16
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回