留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

页岩地层纳微米封堵剂封堵性评价方法

代锋 易刚 张婧 王睿 吴申堯 黄维安

代锋,易刚,张婧,等. 页岩地层纳微米封堵剂封堵性评价方法[J]. 钻井液与完井液,2023,40(6):733-741 doi: 10.12358/j.issn.1001-5620.2023.06.006
引用本文: 代锋,易刚,张婧,等. 页岩地层纳微米封堵剂封堵性评价方法[J]. 钻井液与完井液,2023,40(6):733-741 doi: 10.12358/j.issn.1001-5620.2023.06.006
DAI Feng, YI Gang, ZHANG Jing, et al.Study on methods of evaluating plugging capacity of nanometer and micrometer sized plugging agents for shale formations[J]. Drilling Fluid & Completion Fluid,2023, 40(6):733-741 doi: 10.12358/j.issn.1001-5620.2023.06.006
Citation: DAI Feng, YI Gang, ZHANG Jing, et al.Study on methods of evaluating plugging capacity of nanometer and micrometer sized plugging agents for shale formations[J]. Drilling Fluid & Completion Fluid,2023, 40(6):733-741 doi: 10.12358/j.issn.1001-5620.2023.06.006

页岩地层纳微米封堵剂封堵性评价方法

doi: 10.12358/j.issn.1001-5620.2023.06.006
基金项目: 四川长宁天然气开发有限责任公司重点科技攻关项目“纳微米封堵剂评价方法及作用机理研究”(20210604-12)。
详细信息
    作者简介:

    代锋,1984年生,高级工程师;主要从事页岩气钻完井工程相关科研及管理工作。E-mail: daifeng99@petrochina.com.cn。

  • 中图分类号: TE254.1

Study on Methods of Evaluating Plugging Capacity of Nanometer and Micrometer Sized Plugging Agents for Shale Formations

  • 摘要: 纳微米封堵剂种类虽然较多,目前的评价方法从纳微米尺度评价封堵剂性能的准确性和有效性不足,且没有统一的标准。针对纳微米封堵剂的评价方法问题,选用了纳米孔膜和致密砂床作为介质模拟页岩地层微裂隙,以滤失量和砂床湿润深度作为指标来评价纳微米封堵剂的封堵性能。纳米孔膜法使用100~450 nm孔径的滤膜,平行实验数据拟合线波动很小,适用于评价35~450 nm的纳微米封堵剂;致密砂床法使用200目石英砂填充,多组实验数据方差值为0.2131、平行性好,适用于评价24.6~500 μm的纳微米封堵剂。采用该方法对3种粒径差别较大的封堵剂超细碳酸钙、乳化改性橡胶MORLF、ULIA纳米承压封堵剂进行了评价,优选出具有形变性的乳化改性橡胶MORLF为最优纳米封堵剂。建立方法和优选出的纳米封堵剂在长宁区块现场应用7口井,与同区块采用常规油基钻井液的其他已完钻井相比,复杂地层的井径扩大率平均降低12.74%、建井周期平均缩短12 d,进一步证实评价方法具有平行性和准确性。

     

  • 图  1  不同超声时间下油基钻井液基浆的滤失量

    图  2  300目砂床基浆逃逸情况

    图  3  4%膨润土基浆在400 g砂床中滤失图

    图  4  基浆对4种孔径的孔膜法滤失量的平行性分析

    图  5  超细碳酸钙粒径分布

    图  6  乳化改性橡胶MORLF粒径分布

    图  7  ULIA纳米承压封堵剂粒径分布

    图  8  纳米孔膜法进行封堵后不同封堵剂泥饼的对比

    图  9  纳米孔膜法进行封堵后滤膜的封堵性能

    图  10  致密砂床法实验结果图(从左至右超细碳酸钙、 乳化改性橡胶MORLF、ULIA纳米承压封堵剂)

    图  11  H32-7井的井身结构图

    图  12  H32-7井钻井液性能检测

    表  1  水测砂床的滤失实验结果

    序号300目砂∶200目砂FL/mLt滤失/s填砂高度/cm
    1#10∶01002477.9
    2#10∶01002757.9
    3#5∶51001767.0
    4#7∶31003006.9
    5#8∶21004276.8
    6#9∶11004007.1
    7#9∶11003097.0
    下载: 导出CSV

    表  2  4%膨润土基浆在200 g砂床中的滤失实验

    细砂目数比例FL/mLt滤失/s填砂高度/cm
    300∶2008∶21418007.00
    300∶2008∶2618006.90
    200018007.50
    150018007.30
    下载: 导出CSV

    表  3  4%膨润土基浆在400 g砂床中的滤失实验

    细砂目数FL/mLt滤失/s湿润高度/cm
    80~120018008.20
    150018007.30
    200018005.65
    下载: 导出CSV

    表  4  砂床滤失重复实验结果

    石英砂/
    湿润高度/cm平均值/cm方差
    123456
    80~1208.38.59.68.78.308.28.600.226 667
    1508.16.87.37.38.207.67.5500.235 833
    2005.96.55.56.75.655.65.9750.213 125
    下载: 导出CSV

    表  5  平行性分析实验结果

    纳米孔膜孔径/
    nm
    组数FL/mL瞬时滤失量/
    mL
    7.5 min15 min30 min
    100 111.016.022.02.0
    212.016.023.01.5
    311.516.523.02.0
    411.516.022.51.5
    511.016.023.02.0
    150111.516.523.02.5
    211.516.723.52.0
    311.015.523.22.0
    411.015.522.02.5
    511.015.322.52.0
    220113.018.023.53.5
    212.517.024.23.0
    312.517.023.03.5
    413.017.524.04.5
    513.517.523.04.0
    450114.018.524.04.5
    213.518.023.54.5
    313.018.523.05.0
    414.018.024.55.5
    514.518.524.05.0
    下载: 导出CSV

    表  6  基浆对200目石英砂填充的致密砂床滤失重复实验

    次数/次湿润深度/cm次数/次湿润深度/cm
    15.946.70
    26.555.65
    35.565.60
    下载: 导出CSV

    表  7  致密砂床法封堵性能评价实验结果

    序号湿润深度/cm
    超细
    碳酸钙
    乳化改性橡胶
    MORLF
    ULIA纳米
    承压封堵剂
    17.84.06.2
    28.03.86.1
    38.34.15.9
    47.53.56.1
    57.93.96.2
    平均值/cm7.903.866.10
    下载: 导出CSV
  • [1] 刘敬平,孙金声. 页岩气藏地层井壁水化失稳机理与抑制方法[J]. 钻井液与完井液,2016,33(3):5-11.

    LIU Jingping, SUN Jinsheng. Shale gas reservoir formation wellbore hydration instability mechanism and suppression method[J]. Drilling Fluid & Completion Fluid, 2016, 33(3):5-11.
    [2] 王晓军,白冬青,孙云超,等. 页岩气井强化封堵全油基钻井液体系——以长宁—威远国家级页岩气示范区威远区块为例[J]. 天然气工业,2020(6):107-114.

    WANG Xiaojun, BAI Dongqing, SUN Yunchao, et al. Enhanced plugging of shale gas wells with full oil-based drilling fluid system: Taking Weiyuan block of Changning-Weiyuan national shale gas demonstration area as an example[J]. Natural Gas Industry, 2020(6):107-114.
    [3] CHEN X , TAN C P , DETOURNAY C . A study on wellbore stability in fractured rock masses with impact of mud infiltration[J].Journal of Petroleum Science and Engineering, 2003, 38(3-4): 145-154.
    [4] 黄维安,邱正松,徐加放,等. 吐哈西部油田井壁失稳机理实验研究[J]. 石油学报,2007,28(3):24-28.

    HUANG Weian, QIU Zhengsong, XYU Jiafang, et al. Experimental study on the mechanism of wellbore instability in western Tuha oilfield[J]. Chinese Journal of Petroleum, 2007, 28(3):24-28.
    [5] 倪晓骁,蒋官澄,王建华,等. 油基钻井液用憎液性纳米封堵剂[J]. 钻井液与完井液,2021,38(3):298-304.

    NI Xiaoxiao, JIANG Guancheng, WANG Jianhua, et al. Lyphophobic nano plugging agent for oil-based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2021, 38(3):298-304.
    [6] 刘可成,周俊,崔鑫,等. 阜康凹陷井壁失稳机理与封堵防塌油基钻井液体系[J]. 钻井液与完井液,2022,39(4):451-458.

    LIU Kecheng, ZHOU Jun, CUI Xin, et al. Mechanisms of borehole wall instability in Fukang sag block and an oil based drilling fluid with plugging and inhibitive capacities[J]. Drilling Fluid & Completion Fluid, 2022, 39(4):451-458.
    [7] 张洪伟,黄国强,吴红玲,等. 水基钻井液用石墨烯封堵剂[J]. 钻井液与完井液,2023,40(4):462-466.

    ZHANG Hongwei, HUANG Guoqiang, WU Hongling, et al. Study and application of a graphene lugging agent for water based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2023, 40(4):462-466.
    [8] 闫晶. 封堵评价用微裂缝岩心的模拟及模拟封堵实验[J]. 探矿工程(岩土钻掘工程),2018,45(5):18-21.

    YAN Jing. Simulation of micro-fracture cores for plugging evaluation and simulated plugging experiments[J]. Exploration Engineering(Geotechnical Drilling Engineering), 2018, 45(5):18-21.
    [9] 陈良. 钻井液防塌封堵评价方法及封堵机理研究[D]. 西南石油大学, 2013.

    CHEN Liang. Research on the evaluation method of drilling fluid anti-slump plugging and plugging mechanism [D]. Southwest Petroleum University, 2013.
    [10] 赵海洋,范胜,连世鑫,等. 顺北油气田用抗高温弱凝胶防气侵钻井液体系[J]. 钻井液与完井液,2023,40(3):332-339.

    ZHAO Haiyang, FAN Sheng, LIAN Shixin, et al. Study on high temperature resistant weak gel anti gas invasion drilling fluid system in Shunbei oil and gas field[J]. Drilling Fluid & Completion Fluid, 2023, 40(3):332-339.
    [11] 左富银, 苏俊霖, 李立宗, 等. 有机纳米封堵剂的研究现状及存在问题分析[J]. 化学世界, 2020, 61(11): 733-737.

    ZUO Fuyin, SU Junlin, LI Lizong, et al. Research status and existing problems of organic nano plugging agents [J]. Chemistry World, 20, 61(11): 733-737.
    [12] 刘永贵,宋涛,徐用军. 高温深井微裂缝封堵评价方法及其应用——以松辽盆地徐深气田为例[J]. 天然气工业,2016,36(2):78-83.

    LIU Yonggui, SONG Tao, XU Yongjun. Evaluation method of microfracture plugging in high-temperature deep wells and its application: A case study of Xushen gas field in Songliao basin[J]. Natural Gas Industry, 2016, 36(2):78-83.
    [13] 徐传奇,李海燕,张小锋,等. 纳米封堵剂性能评价及机理分析[J]. 钻采工艺,2019,42(2):100-103.

    XYU Chuanqi, LI Haiyan, ZHANG Xiaofeng, et al. Performance evaluation and mechanism analysis of nanometer plugging agent[J]. Drilling & Production Technology, 2019, 42(2):100-103.
    [14] 林四元,卢运虎,张立权. 琼东南盆地高温高压井强承压堵漏技术[J]. 钻井液与完井液,2023,40(3):363-367.

    LIN Siyuan, LU Yunhu, ZHANG Liquan. Mud loss control technology in Qiongdongnan basin under high temperature and high pressure bearing conditions[J]. Drilling Fluid & Completion Fluid, 2023, 40(3):363-367.
    [15] 魏安超,刘书杰,蒋东雷,等. 裂缝性储层环氧树脂自降解堵漏剂的制备与评价[J]. 钻井液与完井液,2023,40(2):163-168.

    WEI Anchao, LIU Shujie, JIANG Donglei, et al. Synthesis and evaluation of epoxy resin self-degradation plugging agent for fractured formation[J]. Drilling Fluid & Completion Fluid, 2023, 40(2):163-168.
  • 加载中
图(12) / 表(7)
计量
  • 文章访问数:  286
  • HTML全文浏览量:  91
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-17
  • 修回日期:  2023-06-27
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回