留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冀东NP280 Es31井壁稳定钻井液技术

吴晓红 陈金霞 王现博 阚艳娜 丁乙 罗平亚

吴晓红,陈金霞,王现博,等. 冀东NP280 Es31井壁稳定钻井液技术[J]. 钻井液与完井液,2023,40(6):725-732 doi: 10.12358/j.issn.1001-5620.2023.06.005
引用本文: 吴晓红,陈金霞,王现博,等. 冀东NP280 Es31井壁稳定钻井液技术[J]. 钻井液与完井液,2023,40(6):725-732 doi: 10.12358/j.issn.1001-5620.2023.06.005
WU Xiaohong, CHEN Jinxia, WANG Xianbo, et al.Drilling Fluid Technology for Stabilizing the Borehole Penetrating the Shasanyi Sub-member in Block NP-280 in Jidong Oilfield[J]. Drilling Fluid & Completion Fluid,2023, 40(6):725-732 doi: 10.12358/j.issn.1001-5620.2023.06.005
Citation: WU Xiaohong, CHEN Jinxia, WANG Xianbo, et al.Drilling Fluid Technology for Stabilizing the Borehole Penetrating the Shasanyi Sub-member in Block NP-280 in Jidong Oilfield[J]. Drilling Fluid & Completion Fluid,2023, 40(6):725-732 doi: 10.12358/j.issn.1001-5620.2023.06.005

冀东NP280 Es31井壁稳定钻井液技术

doi: 10.12358/j.issn.1001-5620.2023.06.005
基金项目: 国家自然基金-面上项目“深井、超深井水基钻井液失水造壁性与流变性调控机理研究” (52274008);国家重点研发计划课题“井筒稳定性闭环响应机制与智能调控方法”(2019YFA0708303)。
详细信息
    作者简介:

    吴晓红,高级工程师,1982年生,现在从事钻井液技术研究工作。电话13513338493;E-mail:jdzc_wuxh@petrochina.com.cn。

  • 中图分类号: TE254.6

Drilling Fluid Technology for Stabilizing the Borehole Penetrating the Shasanyi Sub-member in Block NP-280 in Jidong Oilfield

  • 摘要: 针对冀东油田南堡280区块多口井钻遇至沙三1亚段(Es31)时发生井壁失稳,研究表明区块内泥岩遇水易产生水化作用,其漏失段间裂缝发育,裂缝多为中高角度裂缝,原裂缝宽度(0.1~100 μm)受压力等诱导因素后变大导致成为致漏性裂缝漏失频繁,同时也会诱发大规模的掉块从井壁上剥落进而导致了井下的坍塌卡钻等井下复杂问题。对南堡280区块破碎地层进行井壁稳定机理、评价方法的相关研究,以原三开抗高温抑制钻井液为基础,进行室内优化实验,构建了适合诱导性裂缝地层的强封堵性井壁稳定钻井液,现场应用表明该钻井液体系可有效防止Es31地层的坍塌失稳问题,具有重大的推广应用意义。

     

  • 图  1  沙河街组全岩矿物组成

    图  2  沙河街组黏土矿物组成

    图  3  工区岩样微观结构图

    图  4  NP283成像测井图

    图  5  NP2-66井裂缝开度图

    图  6  NP280区块各井裂缝宽度分布比例图

    图  7  刚性封堵剂单剂优选实验结果

    图  8  刚性封堵剂复配优选实验结果

    图  9  不同浓度刚性封堵剂复配优选实验结果

    图  10  模拟岩心3D模型图

    图  11  基浆承压能力提高量

    图  12  井浆承压能力增量

    图  13  改进前后钻井液作用下硬度

    图  14  钻井液作用下的地层坍塌压力分布

    表  1  微纳米封堵剂优选实验结果

    封堵剂AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    YP/PV/
    Pa/mPa·s
    FLHTHP/
    mL
    基浆3323100.4342.4
    1% FT-3423826120.4622.1
    1% EP-23524110.4591.8
    2% EP-23925120.4801.3
    3% EP-24226130.5001.6
    1% CMJ-23625110.4401.9
    1%乳化沥青3826120.4622.0
    1% 氨基聚醇3524110.4582.2
    1%白沥青3725120.4801.9
    下载: 导出CSV

    表  2  NP280钻井液改进前后钻井液性能对比

    实验条件ρ/
    g·cm-3
    FV/
    s
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    YP/PV/
    Pa/mPa ·s
    FLHTHP/
    mL
    pH
    井浆
    (改进前)
    1.41574735150.38510.88.7
    井浆
    (改进后)
    1.42575236150.4207.68.8
    老化16 h
    (改进前)
    1.41565138180.37511.28.8
    老化16 h
    (改进后)
    1.41565237150.4057.88.9
    老化24 h
    (改进前)
    1.41565239180.36011.88.8
    老化24 h
    (改进后)
    1.41565437170.4608.18.9
    下载: 导出CSV
  • [1] 李战伟,蒋卓,邓威,等. 冀东油田深层泥岩钻井液防塌性能评价方法研究[J]. 内蒙古石油化工,2017,43(10):103-106.

    LI Zhanwei, JIANG Zhuo, DENG Wei, et al. Research on evaluation method of anti collapsing property of deep mudstone drilling fluid in Jidong Oilfield[J]. Inner Mongolia Petrochemical Industry, 2017, 43(10):103-106.
    [2] CAI J, CHENEVERT M E, SHARMA M M, et al. Decreasing water invasion into Atoka shale using nonmodified silica nanoparticles[J]. SPE Drilling & Completion, 2012, 27(1):103-112.
    [3] 任屹,李佳慧,陈召洋. 纪娜冀东油田优质钻井液回收再利用可行性探究[J]. 石化技术,2015,22(7):46.

    REN Yi, LI Jiahui, CHEN Zhaoyang. Feasibility study on recycling of high-quality drilling fluid in Jidong Oilfield, Jina[J]. Petrochemical Industry Technology, 2015, 22(7):46.
    [4] 吴晓红,崔应中. 冀东1、2号构造泥岩特征分析及钻井液体系优选[J]. 化学与生物工程,2021,38(4):52-55. doi: 10.3969/j.issn.1672-5425.2021.04.009

    WU Xiaohong, CUI Yingzhong. Analysis of mudstone characteristics of Jidong No. 1 and No. 2 structures and optimization of drilling fluid system[J]. Chemistry & Bioengineering, 2021, 38(4):52-55. doi: 10.3969/j.issn.1672-5425.2021.04.009
    [5] 吴晓红,卢淑芹,朱宽亮. 南堡滩海深层天然气藏保护储层钻井液体系研究与效果评价.[J]. 海洋石油,2017,37(3):23-28. doi: 10.3969/j.issn.1008-2336.2017.03.023

    WU Xiaohong, LU Shuqin, ZHU Kuanliang. Development and application of drilling fluid system for reservoir protection of deep gas reservoir in nanpu offshore area[J]. Offshore Oil, 2017, 37(3):23-28. doi: 10.3969/j.issn.1008-2336.2017.03.023
    [6] 杜金云. 泥晶灰岩地层孔壁坍塌掉块现象及处理[J]. 探矿工程(岩土钻掘工程),2006,33(8):51-52.

    DU Jinyun. Treatment to wall of hole collapsing and breaking in mud-crystal limestone layer[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2006, 33(8):51-52.
    [7] ZHUANG G Z, ZHANG Z P, PENG S M, et al. The interaction between surfactants and montmorillonite and its influence on the properties of organo-montmorillonite in oil-based drilling fluids[J]. Clays and Clay Minerals, 2019, 67(3):190-208.
    [8] 陈金霞,周岩,朱宽亮,等. 冀东油田东营组硬脆性泥页岩井壁稳定性分析[J]. 科学技术与工程,2018,18(20):109-115. doi: 10.3969/j.issn.1671-1815.2018.20.016

    CHEN Jinxia, ZHOU Yan, ZHU Kuanliang, et al. The analyses on wellbore stability in hard brittle shale in Dongying formation of Jidong oilfield[J]. Science Technology and Engineering, 2018, 18(20):109-115. doi: 10.3969/j.issn.1671-1815.2018.20.016
    [9] MA C, LI L, YANG Y P, et al. Study on the effect of polymeric rheology modifier on the rheological properties of oil-based drilling fluids[J]. IOP Conference Series: Materials Science and Engineering, 2018, 292(1):012106.
    [10] SUI D J, SUN Y X, ZHAO J Y, et al. Research on a new oil based drilling fluid system[J]. IOP Conference Series: Earth and Environmental Science, 2018, 170(2):022044.
    [11] WILSON A. Wellbore strengthening in shales with nanoparticle-based drilling fluids[J]. Journal of Petroleum Technology 2015, 67(11): 80-81.
    [12] 蒋官澄,宣扬,王金树,等. 仿生固壁钻井液体系的研究与现场应用[J]. 钻井液与完井液,2014,31(3):1-5. doi: 10.3969/j.issn.1001-5620.2014.03.001

    JIANG Guancheng, XUAN Yang, WANG Jinshu, et al. Research and field application of biomimetic wall cementing drilling fluid system[J]. Drilling Fluid & Completion Fluid, 2014, 31(3):1-5. doi: 10.3969/j.issn.1001-5620.2014.03.001
    [13] 孙金声,苏义脑,罗平亚,等. 超低渗透钻井液提高地层承压能力机理研究[J]. 钻井液与完井液,2005,22(5):1-3.

    SUN Jinsheng, SU Yinao, LUO Pingya, et al. Mechanism study on ultra-low invasion drilling fluid for improvement of formation pressure-bearing ability[J]. Drilling Fluid & Completion Fluid, 2005, 22(5):1-3.
    [14] 李成,白杨,于洋,等. 顺北油田破碎地层井壁稳定钻井液技术[J]. 钻井液与完井液,2020,37(1):15-22.

    LI Cheng, BAI Yang, YU Yang, et al. Study and application of drilling fluid technology for stabilizing fractured formations in Shunbei oilfield[J]. Drilling Fluid & Completion Fluid, 2020, 37(1):15-22.
    [15] 白杨,李道雄,李文哲,等. 长宁区块龙马溪组水平段井壁稳定钻井液技术[J]. 西南石油大学学报(自然科学版),2022,44(2):79-88.

    BAI Yang, LI Daoxiong, LI Wenzhe, et al. Borehole wall stabilization drilling fluid technology of Longmaxi formation horizontal section in Changning block[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2022, 44(2):79-88.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  441
  • HTML全文浏览量:  188
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-20
  • 修回日期:  2023-06-05
  • 录用日期:  2023-06-20
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回

    欢迎订阅

    2025年《钻井液与完井液》,邮发代号为:18-423,编辑部不受理订阅业务。