Drilling Fluid Technology for Stabilizing the Borehole Penetrating the Shasanyi Sub-member in Block NP-280 in Jidong Oilfield
-
摘要: 针对冀东油田南堡280区块多口井钻遇至沙三1亚段(Es31)时发生井壁失稳,研究表明区块内泥岩遇水易产生水化作用,其漏失段间裂缝发育,裂缝多为中高角度裂缝,原裂缝宽度(0.1~100 μm)受压力等诱导因素后变大导致成为致漏性裂缝漏失频繁,同时也会诱发大规模的掉块从井壁上剥落进而导致了井下的坍塌卡钻等井下复杂问题。对南堡280区块破碎地层进行井壁稳定机理、评价方法的相关研究,以原三开抗高温抑制钻井液为基础,进行室内优化实验,构建了适合诱导性裂缝地层的强封堵性井壁稳定钻井液,现场应用表明该钻井液体系可有效防止Es31地层的坍塌失稳问题,具有重大的推广应用意义。Abstract: Borehole wall collapse has been encountered when drilling the Shasanyi sub-member in many wells in the NP-280 block in Jidong Oilfield. Study has shown that the shales in the block are easy to hydrate when in contact with water. Microfractures with medium and high angles are developed in the thief zones. These microfractures, with original widths of 0.1 μm – 100 μm, become widened under pressure and hence further become fractures through which drilling fluids are lost. This in turn induces large-scale sloughing of the borehole walls and borehole collapse has thus occurred. In this paper, the studies on the mechanisms of borehole wall stabilization in the broken formations in the NP-280 block and the methods of borehole wall instability evaluation are described. Using the high temperature inhibitive drilling fluid, which was used to drill the third interval of the wells, a new inhibitive drilling fluid with high plugging capacity is developed thorough laboratory optimization. This drilling fluid is suitable for drilling formations with induced microfractures. Field application shows that it can be used to effectively prevent the borehole wall collapse problems encountered in drilling the Shasanyi sub-member, and this technology is worth applying in future drilling operation in this area.
-
Key words:
- Nanpu Block 280 /
- Shasanyi sub-member /
- Drilling fluid /
- Plugging /
- Borehole wall stabilization
-
表 1 微纳米封堵剂优选实验结果
封堵剂 AV/
mPa·sPV/
mPa·sYP/
PaYP/PV/
Pa/mPa·sFLHTHP/
mL基浆 33 23 10 0.434 2.4 1% FT-342 38 26 12 0.462 2.1 1% EP-2 35 24 11 0.459 1.8 2% EP-2 39 25 12 0.480 1.3 3% EP-2 42 26 13 0.500 1.6 1% CMJ-2 36 25 11 0.440 1.9 1%乳化沥青 38 26 12 0.462 2.0 1% 氨基聚醇 35 24 11 0.458 2.2 1%白沥青 37 25 12 0.480 1.9 表 2 NP280钻井液改进前后钻井液性能对比
实验条件 ρ/
g·cm-3FV/
sAV/
mPa·sPV/
mPa·sYP/
PaYP/PV/
Pa/mPa ·sFLHTHP/
mLpH 井浆
(改进前)1.41 57 47 35 15 0.385 10.8 8.7 井浆
(改进后)1.42 57 52 36 15 0.420 7.6 8.8 老化16 h
(改进前)1.41 56 51 38 18 0.375 11.2 8.8 老化16 h
(改进后)1.41 56 52 37 15 0.405 7.8 8.9 老化24 h
(改进前)1.41 56 52 39 18 0.360 11.8 8.8 老化24 h
(改进后)1.41 56 54 37 17 0.460 8.1 8.9 -
[1] 李战伟,蒋卓,邓威,等. 冀东油田深层泥岩钻井液防塌性能评价方法研究[J]. 内蒙古石油化工,2017,43(10):103-106.LI Zhanwei, JIANG Zhuo, DENG Wei, et al. Research on evaluation method of anti collapsing property of deep mudstone drilling fluid in Jidong Oilfield[J]. Inner Mongolia Petrochemical Industry, 2017, 43(10):103-106. [2] CAI J, CHENEVERT M E, SHARMA M M, et al. Decreasing water invasion into Atoka shale using nonmodified silica nanoparticles[J]. SPE Drilling & Completion, 2012, 27(1):103-112. [3] 任屹,李佳慧,陈召洋. 纪娜冀东油田优质钻井液回收再利用可行性探究[J]. 石化技术,2015,22(7):46.REN Yi, LI Jiahui, CHEN Zhaoyang. Feasibility study on recycling of high-quality drilling fluid in Jidong Oilfield, Jina[J]. Petrochemical Industry Technology, 2015, 22(7):46. [4] 吴晓红,崔应中. 冀东1、2号构造泥岩特征分析及钻井液体系优选[J]. 化学与生物工程,2021,38(4):52-55. doi: 10.3969/j.issn.1672-5425.2021.04.009WU Xiaohong, CUI Yingzhong. Analysis of mudstone characteristics of Jidong No. 1 and No. 2 structures and optimization of drilling fluid system[J]. Chemistry & Bioengineering, 2021, 38(4):52-55. doi: 10.3969/j.issn.1672-5425.2021.04.009 [5] 吴晓红,卢淑芹,朱宽亮. 南堡滩海深层天然气藏保护储层钻井液体系研究与效果评价.[J]. 海洋石油,2017,37(3):23-28. doi: 10.3969/j.issn.1008-2336.2017.03.023WU Xiaohong, LU Shuqin, ZHU Kuanliang. Development and application of drilling fluid system for reservoir protection of deep gas reservoir in nanpu offshore area[J]. Offshore Oil, 2017, 37(3):23-28. doi: 10.3969/j.issn.1008-2336.2017.03.023 [6] 杜金云. 泥晶灰岩地层孔壁坍塌掉块现象及处理[J]. 探矿工程(岩土钻掘工程),2006,33(8):51-52.DU Jinyun. Treatment to wall of hole collapsing and breaking in mud-crystal limestone layer[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling) , 2006, 33(8):51-52. [7] ZHUANG G Z, ZHANG Z P, PENG S M, et al. The interaction between surfactants and montmorillonite and its influence on the properties of organo-montmorillonite in oil-based drilling fluids[J]. Clays and Clay Minerals, 2019, 67(3):190-208. [8] 陈金霞,周岩,朱宽亮,等. 冀东油田东营组硬脆性泥页岩井壁稳定性分析[J]. 科学技术与工程,2018,18(20):109-115. doi: 10.3969/j.issn.1671-1815.2018.20.016CHEN Jinxia, ZHOU Yan, ZHU Kuanliang, et al. The analyses on wellbore stability in hard brittle shale in Dongying formation of Jidong oilfield[J]. Science Technology and Engineering, 2018, 18(20):109-115. doi: 10.3969/j.issn.1671-1815.2018.20.016 [9] MA C, LI L, YANG Y P, et al. Study on the effect of polymeric rheology modifier on the rheological properties of oil-based drilling fluids[J]. IOP Conference Series: Materials Science and Engineering, 2018, 292(1):012106. [10] SUI D J, SUN Y X, ZHAO J Y, et al. Research on a new oil based drilling fluid system[J]. IOP Conference Series: Earth and Environmental Science, 2018, 170(2):022044. [11] WILSON A. Wellbore strengthening in shales with nanoparticle-based drilling fluids[J]. Journal of Petroleum Technology 2015, 67(11): 80-81. [12] 蒋官澄,宣扬,王金树,等. 仿生固壁钻井液体系的研究与现场应用[J]. 钻井液与完井液,2014,31(3):1-5. doi: 10.3969/j.issn.1001-5620.2014.03.001JIANG Guancheng, XUAN Yang, WANG Jinshu, et al. Research and field application of biomimetic wall cementing drilling fluid system[J]. Drilling Fluid & Completion Fluid, 2014, 31(3):1-5. doi: 10.3969/j.issn.1001-5620.2014.03.001 [13] 孙金声,苏义脑,罗平亚,等. 超低渗透钻井液提高地层承压能力机理研究[J]. 钻井液与完井液,2005,22(5):1-3.SUN Jinsheng, SU Yinao, LUO Pingya, et al. Mechanism study on ultra-low invasion drilling fluid for improvement of formation pressure-bearing ability[J]. Drilling Fluid & Completion Fluid, 2005, 22(5):1-3. [14] 李成,白杨,于洋,等. 顺北油田破碎地层井壁稳定钻井液技术[J]. 钻井液与完井液,2020,37(1):15-22.LI Cheng, BAI Yang, YU Yang, et al. Study and application of drilling fluid technology for stabilizing fractured formations in Shunbei oilfield[J]. Drilling Fluid & Completion Fluid, 2020, 37(1):15-22. [15] 白杨,李道雄,李文哲,等. 长宁区块龙马溪组水平段井壁稳定钻井液技术[J]. 西南石油大学学报(自然科学版),2022,44(2):79-88.BAI Yang, LI Daoxiong, LI Wenzhe, et al. Borehole wall stabilization drilling fluid technology of Longmaxi formation horizontal section in Changning block[J]. Journal of Southwest Petroleum University (Science & Technology Edition) , 2022, 44(2):79-88.