Optimization of Sulfur-Resistant Drilling Fluid Techniques and Its Application in Drilling High Sulfur Content Reservoirs in Northeast Sichuan
-
摘要: 川东北地区铁山坡、罗家寨、渡口河、七里峡、正坝和菩萨殿气田飞仙关组气藏属于高含硫气藏~特高含硫气藏。针对川东北高含硫气藏地质特点和钻井液技术难点分析,提出钻井液抗硫工艺优化对策,并通过室内实验优选出抗硫钻井液体系配方,进行了钻井液黏度、pH值、碱度、油水比对吸收H2S效果的评价。研究结果表明,水基钻井液和油基钻井液优化抗硫工艺后具有较强的抗硫除硫能力。该抗硫钻井液体系在坡002-H4井和罗家24井现场试用非常成功,钻井周期大幅缩短、机械钻速明显提高,平均井眼扩大率降低,抗硫除硫效果明显,能够满足高含硫井钻进的要求,在下川东高含硫地层钻井方面有着广阔的应用前景。Abstract: Reservoirs in the Tieshanpo formation, the Luojiazhai formation, the Dukouhe formation, the Qilixia formation, the Zhengba formation and the Feixianguan formation in the Pushadan gas field in northeastern Sichuan are those with high or extra-high sulfur content gas reservoirs. This paper discusses the optimization of sulfur-resistant drilling fluid techniques for the drilling of these high sulfur content reservoirs based on the analyses of the reservoir formation geology and of the difficulties in drilling fluid operation. A drilling fluid with sulfur resistance was formulated through laboratory experiment. Laboratory evaluation of the effects of mud viscosity, pH value, alkalinity and oil/water ratio on the absorption of H2S has shown that the optimized water-based drilling fluid and the oil-based drilling fluid have good sulfur resistance. The sulfur-resistant drilling fluid formulated has been very successfully used on the well Po-002-H4 and the well Luojia-24; the drilling time was greatly shortened, the rate of penetration obviously increased, the average hole enlargement reduced, and the drilling fluid showed good sulfur-resistance and sulfur-removal during drilling. This drilling fluid has satisfied the requirements of drilling wells with high sulfur content, and has broad development and application prospects in drilling the high sulfur content formations in the lower east Sichuan area.
-
表 1 抗硫水基钻井液体系配方优选实验
配方 老化条件 ρ/
g·cm−3FLAPI/
mLGel/
Pa/PapH HTHP φ600/φ300 φ200/φ100 φ6/φ3 备注 FL/mL k/mm 1# 130 ℃、8 h 1.62 3.2 1.5/8.0 9.5 11.0 4.5 90/53 38/22 3/2 杯底无沉淀,玻棒直接到
底,有清脆撞击声2# 130 ℃、8 h 1.62 3.2 2.5/12.5 9.5 10.8 5.0 120/70 51/31 4/3 开罐比1#稠,杯底无沉淀,
玻棒到底,有清脆撞击声3# 130 ℃、8 h 1.60 3.6 0.5/4.0 9.5 11.2 5.5 58/31 21/12 2/1 玻棒不能到底,杯底有5 mm
沉淀,搅拌1 min后即散4# 130 ℃、8 h 1.59 3.4 0.5/4.0 10 9.8 3.5 48/26 19/12 2/1 玻棒直接到底,有清脆撞击声,
静置后无沉淀5# 130 ℃、8 h 1.60 3.0 0/0.25 10 10.8 7.0 34/19 13/9 1/1 玻棒不能到底,杯底有3 mm沉
淀,搅拌即散,静置后有沉淀表 2 抗硫油基钻井液体系配方优选实验
序号 配方 实验
条件PV/
mPa·sYP/
PaGel/
Pa/Pa碱
度FLHTHP/
mLφ600/
φ300φ200/
φ100φ6/
φ36# 白油+3%有机土+5%三合一乳化剂HFMO+5%降滤失剂HFLO+5%CaO+3%RF-9+5%超细钙+5%超微重晶石+35%CaCl2盐水(90∶10)+重晶石粉 65 ℃ 19 1.0 1/3 3.5 12 40/21 15/8 2/1 老化后 20 1.5 1.5/3 3.5 12 43/23 17/10 2/1 7# 白油+3%有机土+6%HFMO+5%HFLO+3%CaO+
3%RF-9+5%超细钙+5%超微重晶石+
35%CaCl2盐水(85∶15)+重晶石粉65 ℃ 19 1.0 1.5/3 3.5 14 40/21 15/9 2/1 老化后 21 3.0 1.5/3 3.5 14 48/27 19/11 2/1 8# 白油+7%有机土+6%HFMO+7%HFLO+3%CaO+5%
RF-9+6%超细钙+5%超微重晶石+3%除硫剂
JD-2+40%CaCl2盐水(85∶15)+重晶石粉65 ℃ 43 14.5 6/9 3.5 1.2 115/72 56/38 14/12 9# 白油+7%有机土+6%HFMO+7%HFLO+3%CaO+5%
RF-9+6%超细钙+5%超微重晶石+3%JD-2+30%CaCl2
盐水(85∶15)+重晶石粉65 ℃ 47 8.0 6/8 3.0 1.0 110/63 53/36 13/12 10# 白油+6%有机土+6%HFMO+7%HFLO+5%CaO+5%
RF-9+6%超细钙+5%超微重晶石+3%JD-2+30%CaCl2
盐水(85∶15)+重晶石粉65 ℃ 30 9.0 3/6 3.5 1.6 78/48 38/25 8/7 老化后 25 7.5 3/5 3.5 1.6 65/40 30/20 7/6 注:钻井液密度为1.22~1.25 g/cm3;老化条件为120 ℃、24 h;10#配方老化前和老化后的破乳电压分别为891、980 V。 表 3 改变10#配方钻井液中有机土 加量后不同体系的流变性能
体系 AV/
mPa·sPV/
mPa·sYP/
Pa10'# 3.0 2.5 0.5 10"# 8.5 7.0 1.5 10# 17.5 10.0 7.5 表 4 坡002-H4井应用井段抗硫水基钻井液的性能
井深/m ρ/(g·cm−3) FV/s FLAPI/mL PV/mPa·s YP/Pa YP/PV/(Pa/mPa·s) pH 2367~2656 1.43 45~49 3.4~4.0 24~27 4.0~5.0 0.015~0.208 10.0~10.5 2656~3884 1.43~1.73 45~53 2.8~3.6 19~40 3.5~9.0 0.023~0.194 10.5 3951 1.76 50 2.8 35 7.0 0.200 10.5 表 5 坡002-H4井应用井段抗硫油基钻井液的性能
开次 井深/m ρ/(g·cm−3) FV/s FLHTHP/mL PV/mPa·s YP/Pa YP/PV/(Pa/mPa·s) 碱度 ES/V 导眼井 3958~4435 1.00~1.05 57~59 2.0~2.8 15~19 3.8~4.8 0.220~0.250 2.7~3.8 416~578 水平井 3966~4090 1.20 55~58 2.2~2.4 20~22 4.3~5.2 0.196~0.264 3.6~3.9 540~640 4123~4238 1.03~1.05 57 2.2~2.4 20~22 3.8~4.3 0.170~0.210 3.0~4.0 410~505 4238~5056 1.08~1.09 56~57 1.6~2.0 19~21 3.8~5.2 0.200~0.270 6.2~7.0 590~1020 表 6 罗家24井应用井段抗硫水基钻井液性能
井深
mρ/
g·cm−3FV/
sFLAPI/
mLPV/
mPa·sYP/
PaYP/PV/
Pa/mPa·spH 2357 1.19 47 4.0 21 4.0 0.190 10.0 2500 1.18 45 2.8 17 3.0 0.176 10.0 2620~
28291.18 45~
502.6~
3.015~
203.0~
6.50.19~
0.3210.0 2944 1.20 45 3.2 16 4.5 0.281 10.5 表 7 罗家24井应用井段抗硫油基钻井液性能
开次 井深m ρ/(g·cm−3) FV/s FLHTHP/mL PV/mPa·s YP/Pa Gel/(Pa/Pa) 碱度 ES/V 油水比 四开 2984 1.20 66 2.2 33 8.0 3/4 3.0 510 80∶20 3255 1.23 65 2.0 29 7.0 4/6 4.5 520 80∶20 3406 1.25 63 2.0 29 8.0 3/5 4.5 610 80∶20 3615~4016 1.24 59 2.0 26 6.0~8.5 2.5~3/3.5~4 5.0 585~685 80∶20 五开 4019~4808 1.10 56~58 1.4~2.0 21~27 6.0~8.0 2.5~3/3~5 4.0~5.0 580~638 80∶20 4944~5250 1.11~1.12 56~57 1.6 24~29 6.5~8.0 3/4 5.0 627~753 80∶20 -
[1] 郑力会,张明伟. 封堵技术基础理论回顾与展望[J]. 石油钻采工艺,2012,34(5):1-9.ZHENG Lihui, ZHANG Mingwei. Review of basic theory for lost circulation control[J]. Oil Drilling & Production Technology, 2012, 34(5):1-9. [2] 徐加放,邱正松,黄晓东. 谈钻井液封堵特性在防止井壁坍塌中的作用[J]. 钻井液与完井液,2008,25(1):3-5. doi: 10.3969/j.issn.1001-5620.2008.01.002XU Jiafang, QIU Zhengsong, HUANG Xiaodong. Application of the sealing property of drilling fluids in bore hole stabilization[J]. Drilling Fluid & Completion Fluid, 2008, 25(1):3-5. doi: 10.3969/j.issn.1001-5620.2008.01.002 [3] 刘之的,牛林林,汤小燕. 复杂碳酸盐岩地层井壁失稳机理分析[J]. 西部探矿工程,2002,17(12):185-187.LIU Zhide, NIU Linlin, TANG Xiaoyan. Mechanism analysis on borehole wall in complex carbonate formation[J]. West-China Exploration Engineering, 2002, 17(12):185-187. [4] 杜青才,石晓兵,聂荣国,等. 高陡构造井壁失稳及井下复杂的机理研究[J]. 钻采工艺,2004,27(4):6-7.DU Qingcai, SHI Xiaobing, NIE Rongguo, et al. Mechanism research on sidewall unstability and downhole complexity in high and steep structure of Xinjiang oilfield[J]. Drilling & Production Technology, 2004, 27(4):6-7. [5] 朱宽亮,王富华,徐同台,等. 抗高温水基钻井液技术研究与应用现状及发展趋势(Ⅱ)[J]. 钻井液与完井液,2009,26(6):56-64.ZHU Kuanliang, WANG Fuhua, XU Tongtai, et al. Status in quo and progress(Ⅱ): study and application of high temperature drilling fluids[J]. Drilling Fluid & Completion Fluid, 2009, 26(6):56-64. [6] 赵忠举,徐同台. 国外钻井液新技术[J]. 钻井液与完井液,2000,17(2):32-36.ZHAO Zhongju, XU Tongtai. New drilling fluid technology abroad[J]. Drilling Fluid & Completion Fluid, 2000, 17(2):32-36. [7] 蓝强,李公让,张敬辉,等. 无黏土低密度全油基钻井完井液的研究[J]. 钻井液与完井液,2010,27(2):6-9.LAN Qiang, LI Gongrang, ZHANG Jinghui, et al. Study on clay-free low density whole oil base drill-in fluid[J]. Drilling Fluid & Completion Fluid, 2010, 27(2):6-9. [8] 张立凡. 高密度油基钻井液在四川角 57 井的应用[J]. 钻井液与完 井液,1998,15(4):42-43.ZHANG Lifan. Application of high density oil-based drilling fluid in the Jiao 57 well of Sichuan[J]. Drilling Fluid and Completion Fluid, 1998, 15(4):42-43. [9] 安文忠,张滨海,陈建兵. VersaClean 低毒油基钻井液技术[J]. 石油钻探技术,2003,31(6):33-35. doi: 10.3969/j.issn.1001-0890.2003.06.012AN Wenzhong, ZHANG Binhai, CHEN Jianbing. VersaClean-a low-poison oil mud[J]. Petroleum Drilling Techniques, 2003, 31(6):33-35. doi: 10.3969/j.issn.1001-0890.2003.06.012 [10] 张炜,刘振东,刘宝锋,等. 油基钻井液的推广及循环利用[J]. 石油钻探技术,2008,36(6):34-38.ZHANG Wei, LIU Zhendong, LIU Baofeng, et al. Popularization and recycling of oil-based drilling fluid[J]. Petroleum Drilling Techniques, 2008, 36(6):34-38. [11] 张高波,高秦陇,马倩芸. 提高油基钻井液在页岩气地层抑制防塌性能的措施[J]. 钻井液与完井液,2019,36(2):141-147. doi: 10.3969/j.issn.1001-5620.2019.02.002ZHANG Gaobo, GAO Qinlong, MA Qianyun. Discussion on the enhancement of the inhibitive capacity of oil base drilling fluids in shale gas drilling[J]. Drilling Fluid & Completion Fluid, 2019, 36(2):141-147. doi: 10.3969/j.issn.1001-5620.2019.02.002 [12] 杨振周,刘付臣,周春,等. 抗超高温高密度油基钻井液用新型降黏剂的性能[J]. 钻井液与完井液,2018,35(2):35-39. doi: 10.3969/j.issn.1001-5620.2018.02.005YANG Zhenzhou, LIU Fuchen, ZHOU Chun, et al. Study on the performance of new ultra-high temperature high density oil base mud thinners[J]. Drilling Fluid & Completion Fluid, 2018, 35(2):35-39. doi: 10.3969/j.issn.1001-5620.2018.02.005 [13] 王建华,张家旗,谢盛,等. 页岩气油基钻井液体系性能评估及对策[J]. 钻井液与完井液,2019,36(5):555-559.WANG Jianhua, ZHANG Jiaqi, XIE Sheng, et al. Evaluation and improvement of the performance of oil base drilling fluids for shale gas drilling[J]. Drilling Fluid & Completion Fluid, 2019, 36(5):555-559. [14] 潘谊党,于培志. 密度对油基钻井液性能的影响[J]. 钻井液与完井液,2019,36(3):273-279.PAN Yidang, YU Peizhi. Effect of density on the performance of oil base drilling fluids[J]. Drilling Fluid & Completion Fluid, 2019, 36(3):273-279. [15] 王星媛,欧翔,明显森. 威202H3平台废弃油基钻井液处理技术[J]. 钻井液与完井液,2017,34(2):64-69. doi: 10.3969/j.issn.1001-5620.2017.02.011WANG Xingyuan, OU Xiang, MING Xiansen. Disposing waste oil base drilling fluid from the Wei 202H3 platform[J]. Drilling Fluid & Completion Fluid, 2017, 34(2):64-69. doi: 10.3969/j.issn.1001-5620.2017.02.011 [16] 李茂森,刘政,胡嘉. 高密度油基钻井液在长宁—威远区块页岩气水平井中的应用[J]. 天然气勘探与开发,2017,40(1):88-92. doi: 10.12055/gaskk.issn.1673-3177.2017.01.015LI Maosen, LIU Zheng, HU Jia. Application of high density oil-based drilling fluid in shale gas horizontal wells of Changning-Weiyuan block[J]. Natural Gas Exploration and Development, 2017, 40(1):88-92. doi: 10.12055/gaskk.issn.1673-3177.2017.01.015