留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

川东北高含硫气藏钻井液抗硫工艺优化与应用

肖金裕 周华安 暴丹 冯学荣 卢浩 杨兰平 汪伟

肖金裕,周华安,暴丹,等. 川东北高含硫气藏钻井液抗硫工艺优化与应用[J]. 钻井液与完井液,2023,40(6):718-724 doi: 10.12358/j.issn.1001-5620.2023.06.004
引用本文: 肖金裕,周华安,暴丹,等. 川东北高含硫气藏钻井液抗硫工艺优化与应用[J]. 钻井液与完井液,2023,40(6):718-724 doi: 10.12358/j.issn.1001-5620.2023.06.004
XIAO Jinyu, ZHOU Huaan, BAO Dan, et al.Optimization of sulfur-resistant drilling fluid techniques and its application in drilling high sulfur content reservoirs in northeast Sichuan[J]. Drilling Fluid & Completion Fluid,2023, 40(6):718-724 doi: 10.12358/j.issn.1001-5620.2023.06.004
Citation: XIAO Jinyu, ZHOU Huaan, BAO Dan, et al.Optimization of sulfur-resistant drilling fluid techniques and its application in drilling high sulfur content reservoirs in northeast Sichuan[J]. Drilling Fluid & Completion Fluid,2023, 40(6):718-724 doi: 10.12358/j.issn.1001-5620.2023.06.004

川东北高含硫气藏钻井液抗硫工艺优化与应用

doi: 10.12358/j.issn.1001-5620.2023.06.004
基金项目: 川庆钻探工程有限公司科技攻关项目“川东北高含硫气藏钻井液抗硫及承压堵漏关键技术深化研究与试验”(CQ2021B-46-Z2-3)。
详细信息
    作者简介:

    肖金裕,高级工程师,1969年生,毕业于石油大学(华东)开发系泥浆专业,现在主要从事现场钻井液技术应用研究工作。E-mail:xiaojy_sc@cnpc.com.cn

  • 中图分类号: TE254.3

Optimization of Sulfur-Resistant Drilling Fluid Techniques and Its Application in Drilling High Sulfur Content Reservoirs in Northeast Sichuan

  • 摘要: 川东北地区铁山坡、罗家寨、渡口河、七里峡、正坝和菩萨殿气田飞仙关组气藏属于高含硫气藏~特高含硫气藏。针对川东北高含硫气藏地质特点和钻井液技术难点分析,提出钻井液抗硫工艺优化对策,并通过室内实验优选出抗硫钻井液体系配方,进行了钻井液黏度、pH值、碱度、油水比对吸收H2S效果的评价。研究结果表明,水基钻井液和油基钻井液优化抗硫工艺后具有较强的抗硫除硫能力。该抗硫钻井液体系在坡002-H4井和罗家24井现场试用非常成功,钻井周期大幅缩短、机械钻速明显提高,平均井眼扩大率降低,抗硫除硫效果明显,能够满足高含硫井钻进的要求,在下川东高含硫地层钻井方面有着广阔的应用前景。

     

  • 图  1  水基钻井液黏度对吸收H2S效果的影响

    图  2  水基钻井液pH值对吸收H2S效果的影响

    图  3  钻井液黏度对吸收H2S效果的影响

    图  4  碱度对油基钻井液吸收H2S效果的影响

    图  5  油水比对吸收H2S效果的影响

    表  1  抗硫水基钻井液体系配方优选实验

    配方老化条件ρ/
    g·cm−3
    FLAPI/
    mL
    Gel/
    Pa/Pa
    pHHTHPφ600/φ300φ200/φ100φ6/φ3备注
    FL/mLk/mm
    1#130 ℃、8 h1.623.21.5/8.09.511.04.590/5338/223/2杯底无沉淀,玻棒直接到
    底,有清脆撞击声
    2#130 ℃、8 h1.623.22.5/12.59.510.85.0120/7051/314/3开罐比1#稠,杯底无沉淀,
    玻棒到底,有清脆撞击声
    3#130 ℃、8 h1.603.60.5/4.09.511.25.558/3121/122/1玻棒不能到底,杯底有5 mm
    沉淀,搅拌1 min后即散
    4#130 ℃、8 h1.593.40.5/4.0109.83.548/2619/122/1玻棒直接到底,有清脆撞击声,
    静置后无沉淀
    5#130 ℃、8 h1.603.00/0.251010.87.034/1913/91/1玻棒不能到底,杯底有3 mm沉
    淀,搅拌即散,静置后有沉淀
    下载: 导出CSV

    表  2  抗硫油基钻井液体系配方优选实验

    序号配方实验
    条件
    PV/
    mPa·s
    YP/
    Pa
    Gel/
    Pa/Pa

    FLHTHP/
    mL
    φ600/
    φ300
    φ200/
    φ100
    φ6/
    φ3
    6#白油+3%有机土+5%三合一乳化剂HFMO+5%降滤失剂HFLO+5%CaO+3%RF-9+5%超细钙+5%超微重晶石+35%CaCl2盐水(90∶10)+重晶石粉65 ℃191.01/33.51240/2115/82/1
    老化后201.51.5/33.51243/2317/102/1
    7#白油+3%有机土+6%HFMO+5%HFLO+3%CaO+
    3%RF-9+5%超细钙+5%超微重晶石+
    35%CaCl2盐水(85∶15)+重晶石粉
    65 ℃191.01.5/33.51440/2115/92/1
    老化后213.01.5/33.51448/2719/112/1
    8#白油+7%有机土+6%HFMO+7%HFLO+3%CaO+5%
    RF-9+6%超细钙+5%超微重晶石+3%除硫剂
    JD-2+40%CaCl2盐水(85∶15)+重晶石粉
    65 ℃4314.56/93.51.2115/7256/3814/12
    9#白油+7%有机土+6%HFMO+7%HFLO+3%CaO+5%
    RF-9+6%超细钙+5%超微重晶石+3%JD-2+30%CaCl2
    盐水(85∶15)+重晶石粉
    65 ℃478.06/83.01.0110/6353/3613/12
    10#白油+6%有机土+6%HFMO+7%HFLO+5%CaO+5%
    RF-9+6%超细钙+5%超微重晶石+3%JD-2+30%CaCl2
    盐水(85∶15)+重晶石粉
    65 ℃309.03/63.51.678/4838/258/7
    老化后257.53/53.51.665/4030/207/6
      注:钻井液密度为1.22~1.25 g/cm3;老化条件为120 ℃、24 h;10#配方老化前和老化后的破乳电压分别为891、980 V。
    下载: 导出CSV

    表  3  改变10#配方钻井液中有机土  加量后不同体系的流变性能

    体系AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    10'#3.02.50.5
    10"# 8.57.01.5
    10#17.510.07.5
    下载: 导出CSV

    表  4  坡002-H4井应用井段抗硫水基钻井液的性能

    井深/mρ/(g·cm−3FV/sFLAPI/mLPV/mPa·sYP/PaYP/PV/(Pa/mPa·s)pH
    2367~26561.4345~493.4~4.024~274.0~5.00.015~0.20810.0~10.5
    2656~38841.43~1.7345~532.8~3.619~403.5~9.00.023~0.19410.5
    39511.76502.8357.00.20010.5
    下载: 导出CSV

    表  5  坡002-H4井应用井段抗硫油基钻井液的性能

    开次井深/mρ/(g·cm−3FV/sFLHTHP/mLPV/mPa·sYP/PaYP/PV/(Pa/mPa·s)碱度ES/V
    导眼井3958~44351.00~1.0557~592.0~2.815~193.8~4.80.220~0.2502.7~3.8416~578
    水平井3966~40901.2055~582.2~2.420~224.3~5.20.196~0.2643.6~3.9540~640
    4123~42381.03~1.05572.2~2.420~223.8~4.30.170~0.2103.0~4.0410~505
    4238~50561.08~1.0956~571.6~2.019~213.8~5.20.200~0.2706.2~7.0590~1020
    下载: 导出CSV

    表  6  罗家24井应用井段抗硫水基钻井液性能

    井深
    m
    ρ/
    g·cm−3
    FV/
    s
    FLAPI/
    mL
    PV/
    mPa·s
    YP/
    Pa
    YP/PV/
    Pa/mPa·s
    pH
    23571.19474.0214.00.19010.0
    25001.18452.8173.00.17610.0
    2620~
    2829
    1.1845~
    50
    2.6~
    3.0
    15~
    20
    3.0~
    6.5
    0.19~
    0.32
    10.0
    29441.20453.2164.50.28110.5
    下载: 导出CSV

    表  7  罗家24井应用井段抗硫油基钻井液性能

    开次井深mρ/(g·cm−3)FV/sFLHTHP/mLPV/mPa·sYP/PaGel/(Pa/Pa)碱度ES/V油水比
    四开29841.20662.2338.03/43.051080∶20
    32551.23652.0297.04/64.552080∶20
    34061.25632.0298.03/54.561080∶20
    3615~40161.24592.0266.0~8.52.5~3/3.5~45.0585~68580∶20
    五开4019~48081.1056~581.4~2.021~276.0~8.02.5~3/3~54.0~5.0580~63880∶20
    4944~52501.11~1.1256~571.624~296.5~8.03/45.0627~75380∶20
    下载: 导出CSV
  • [1] 郑力会,张明伟. 封堵技术基础理论回顾与展望[J]. 石油钻采工艺,2012,34(5):1-9.

    ZHENG Lihui, ZHANG Mingwei. Review of basic theory for lost circulation control[J]. Oil Drilling & Production Technology, 2012, 34(5):1-9.
    [2] 徐加放,邱正松,黄晓东. 谈钻井液封堵特性在防止井壁坍塌中的作用[J]. 钻井液与完井液,2008,25(1):3-5. doi: 10.3969/j.issn.1001-5620.2008.01.002

    XU Jiafang, QIU Zhengsong, HUANG Xiaodong. Application of the sealing property of drilling fluids in bore hole stabilization[J]. Drilling Fluid & Completion Fluid, 2008, 25(1):3-5. doi: 10.3969/j.issn.1001-5620.2008.01.002
    [3] 刘之的,牛林林,汤小燕. 复杂碳酸盐岩地层井壁失稳机理分析[J]. 西部探矿工程,2002,17(12):185-187.

    LIU Zhide, NIU Linlin, TANG Xiaoyan. Mechanism analysis on borehole wall in complex carbonate formation[J]. West-China Exploration Engineering, 2002, 17(12):185-187.
    [4] 杜青才,石晓兵,聂荣国,等. 高陡构造井壁失稳及井下复杂的机理研究[J]. 钻采工艺,2004,27(4):6-7.

    DU Qingcai, SHI Xiaobing, NIE Rongguo, et al. Mechanism research on sidewall unstability and downhole complexity in high and steep structure of Xinjiang oilfield[J]. Drilling & Production Technology, 2004, 27(4):6-7.
    [5] 朱宽亮,王富华,徐同台,等. 抗高温水基钻井液技术研究与应用现状及发展趋势(Ⅱ)[J]. 钻井液与完井液,2009,26(6):56-64.

    ZHU Kuanliang, WANG Fuhua, XU Tongtai, et al. Status in quo and progress(Ⅱ): study and application of high temperature drilling fluids[J]. Drilling Fluid & Completion Fluid, 2009, 26(6):56-64.
    [6] 赵忠举,徐同台. 国外钻井液新技术[J]. 钻井液与完井液,2000,17(2):32-36.

    ZHAO Zhongju, XU Tongtai. New drilling fluid technology abroad[J]. Drilling Fluid & Completion Fluid, 2000, 17(2):32-36.
    [7] 蓝强,李公让,张敬辉,等. 无黏土低密度全油基钻井完井液的研究[J]. 钻井液与完井液,2010,27(2):6-9.

    LAN Qiang, LI Gongrang, ZHANG Jinghui, et al. Study on clay-free low density whole oil base drill-in fluid[J]. Drilling Fluid & Completion Fluid, 2010, 27(2):6-9.
    [8] 张立凡. 高密度油基钻井液在四川角 57 井的应用[J]. 钻井液与完 井液,1998,15(4):42-43.

    ZHANG Lifan. Application of high density oil-based drilling fluid in the Jiao 57 well of Sichuan[J]. Drilling Fluid and Completion Fluid, 1998, 15(4):42-43.
    [9] 安文忠,张滨海,陈建兵. VersaClean 低毒油基钻井液技术[J]. 石油钻探技术,2003,31(6):33-35. doi: 10.3969/j.issn.1001-0890.2003.06.012

    AN Wenzhong, ZHANG Binhai, CHEN Jianbing. VersaClean-a low-poison oil mud[J]. Petroleum Drilling Techniques, 2003, 31(6):33-35. doi: 10.3969/j.issn.1001-0890.2003.06.012
    [10] 张炜,刘振东,刘宝锋,等. 油基钻井液的推广及循环利用[J]. 石油钻探技术,2008,36(6):34-38.

    ZHANG Wei, LIU Zhendong, LIU Baofeng, et al. Popularization and recycling of oil-based drilling fluid[J]. Petroleum Drilling Techniques, 2008, 36(6):34-38.
    [11] 张高波,高秦陇,马倩芸. 提高油基钻井液在页岩气地层抑制防塌性能的措施[J]. 钻井液与完井液,2019,36(2):141-147. doi: 10.3969/j.issn.1001-5620.2019.02.002

    ZHANG Gaobo, GAO Qinlong, MA Qianyun. Discussion on the enhancement of the inhibitive capacity of oil base drilling fluids in shale gas drilling[J]. Drilling Fluid & Completion Fluid, 2019, 36(2):141-147. doi: 10.3969/j.issn.1001-5620.2019.02.002
    [12] 杨振周,刘付臣,周春,等. 抗超高温高密度油基钻井液用新型降黏剂的性能[J]. 钻井液与完井液,2018,35(2):35-39. doi: 10.3969/j.issn.1001-5620.2018.02.005

    YANG Zhenzhou, LIU Fuchen, ZHOU Chun, et al. Study on the performance of new ultra-high temperature high density oil base mud thinners[J]. Drilling Fluid & Completion Fluid, 2018, 35(2):35-39. doi: 10.3969/j.issn.1001-5620.2018.02.005
    [13] 王建华,张家旗,谢盛,等. 页岩气油基钻井液体系性能评估及对策[J]. 钻井液与完井液,2019,36(5):555-559.

    WANG Jianhua, ZHANG Jiaqi, XIE Sheng, et al. Evaluation and improvement of the performance of oil base drilling fluids for shale gas drilling[J]. Drilling Fluid & Completion Fluid, 2019, 36(5):555-559.
    [14] 潘谊党,于培志. 密度对油基钻井液性能的影响[J]. 钻井液与完井液,2019,36(3):273-279.

    PAN Yidang, YU Peizhi. Effect of density on the performance of oil base drilling fluids[J]. Drilling Fluid & Completion Fluid, 2019, 36(3):273-279.
    [15] 王星媛,欧翔,明显森. 威202H3平台废弃油基钻井液处理技术[J]. 钻井液与完井液,2017,34(2):64-69. doi: 10.3969/j.issn.1001-5620.2017.02.011

    WANG Xingyuan, OU Xiang, MING Xiansen. Disposing waste oil base drilling fluid from the Wei 202H3 platform[J]. Drilling Fluid & Completion Fluid, 2017, 34(2):64-69. doi: 10.3969/j.issn.1001-5620.2017.02.011
    [16] 李茂森,刘政,胡嘉. 高密度油基钻井液在长宁—威远区块页岩气水平井中的应用[J]. 天然气勘探与开发,2017,40(1):88-92. doi: 10.12055/gaskk.issn.1673-3177.2017.01.015

    LI Maosen, LIU Zheng, HU Jia. Application of high density oil-based drilling fluid in shale gas horizontal wells of Changning-Weiyuan block[J]. Natural Gas Exploration and Development, 2017, 40(1):88-92. doi: 10.12055/gaskk.issn.1673-3177.2017.01.015
  • 加载中
图(5) / 表(7)
计量
  • 文章访问数:  379
  • HTML全文浏览量:  117
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-14
  • 修回日期:  2023-06-11
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回

    欢迎订阅

    2025年《钻井液与完井液》,邮发代号为:18-423,编辑部不受理订阅业务。