A Polymeric Microsphere OBM-1 for Oil Based Drilling Fluids
-
摘要: 目前的堵漏材料大多针对水基钻井液来研发,对油基钻井液的适用性不强。采用反相乳液聚合方法,通过引入亲油组分,合成了一种油基钻井液用聚合物微球OBM-1。OBM-1基本呈球形,粒径分布处于1~100 μm之间,在油基钻井液中具有良好的分散能力。加入3%OBM-1后,能够保持油基钻井液流变性能稳定,有效降低高温高压滤失量和封闭滤失量。高温高压滤失实验表明,OBM-1可使120 ℃的高温高压滤失量降低50%,其抗温可达150 ℃;封堵承压实验表明,OBM-1能够封堵5~40 μm砂盘,承压达15 MPa;封闭漏失实验表明,OBM-1能够有效封堵20 ~ 40目石英砂制备的砂床。现场应用结果表明,OBM-1可有效降低漏失量,试验井段每米油基钻井液消耗量同比下降30.3%,很大程度节约了钻井成本。该研究为使用油基钻井液进行安全高效钻进提供了有力的技术支持。
-
关键词:
- 油基钻井液 /
- OBM-1聚合物微球 /
- 抗高温 /
- 堵漏剂
Abstract: Serious losses of oil based drilling fluids during drilling greatly affect the time efficiency of the drilling operation and the economic benefits of oil and gas development. Lost circulation materials presently in use are almost all developed for use in water based drilling fluids and thus have deficiencies for use in oil based drilling fluids. A polymeric microsphere OBM-1 for oil based drilling fluids was synthesized through inverse emulsion polymerization and organophilic groups were introduced into the molecules of the final product. OBM-1, a basically spherical material, has particle sizes between 1 μm and 100 μm, and disperses very well in oil based drilling fluids. An oil based drilling fluids treated with 3% OBM-1 has stable rheology and reduced medium pressure filtration rate and high temperature high pressure filtration rate. High temperature high pressure test results show that the higher the temperature, the better the filtration control performance of OBM-1. Test results of plugging under pressure with OBM-1 show that OBM-1 can plug the fractures of 5-40 μm under 15 MPa. Lost circulation test results show that OBM-1 can plug quartz sand-beds of 20-40 mech under 15 MPa. In field application, OBM-1 can effectively reduce the volume of mud lost, the well drilled with an oil based drilling fluid treated with OBM-1 has mud consumption that was reduced by 30.3%, greatly saved the drilling cost. This study has provided a strong technical support for safe and efficient drilling with oil based drilling fluids. -
表 1 OBM-1对空白体系性能的影响
配方 T老化/
℃PV/
mPa·sYP/
PaYP/PV/
Pa/mPa·sφ6/φ3 ES/
VFLHTHP/
mL+3%沥青 老化前 8 2.0 0.2500 2.0/1.5 424 80 11 3.5 0.3182 4.0/3.5 482 7.4 100 10 4.0 0.4000 2.5/2.0 450 7.6 120 8 2.5 0.3125 2.5/2.0 369 11.2 150 7 2.0 0.2857 1.5/1.0 319 8.8 +3%沥青+
3%OBM-1老化前 9 2.5 0.2778 2.0/1.5 486 80 11 5.0 0.4545 4.5/4.0 569 5.4 100 13 2.0 0.1538 2.5/2.0 527 5.6 120 9 3.0 0.3333 2.5/2.0 412 5.6 150 10 3.0 0.3000 2.0/1.5 393 7.2 表 2 OBM-1与其他常见堵漏材料CaCO3及沥青的复配效果
序号 配方 T老化/
℃PV/
mPa·sYP/
PaYP/PV/
Pa/mPa·sφ6/φ3 ES/
VFLHTHP/
mL1# 3%CaCO3 +3%沥青 老化前 18 5.5 0.3056 4.0/3.0 688 80 21 7.0 0.3333 5.0/4.5 649 2.8 老化前 22 5.0 0.2273 4.0/3.0 667 150 23 4.5 0.1957 3.0/3.0 681 13.6 2# 3%OBM-1+3%沥青 老化前 18 5.0 0.2778 4.0/3.5 660 80 11 3.5 0.3182 4.0/3.5 716 2.4 老化前 23 4.0 0.1739 4.0/3.0 598 150 23 4.5 0.1957 4.0/3.0 646 12.8 3# 3%OBM-1+3%CaCO3 老化前 18 3.0 0.1667 3.0/2.5 726 80 20 5.5 0.2750 5.0/4.5 716 3.0 老化前 23 4.5 0.1957 4.0/3.0 587 150 22 3.5 0.1590 3.0/2.0 697 15.2 注:钻井液密度为1.5 g/cm3,选取40 μm的砂盘。 表 3 3口试验井井浆加入2%OBM-1前后的性能对比
钻井液 ρ/
g/cm3FV/
sPV/
mPa·sYP/
PaGel/
Pa/PaES/
VFLHTHP/
mL碱度 JLHW227井浆 1.46 82 38 9 7/9 431 1.6 2.8 井浆+2%OBM-1 1.46 84 40 10 7/12 450 1.4 2.8 JLHW287井浆 1.50 119 53 14 6/9 419 2.4 2.8 井浆+2%OBM-1 1.50 125 55 14 7/11 440 1.8 2.8 JLHW286井浆 1.47 90 49 8 4/7 460 1.6 2.6 井浆+2%OBM-1 1.47 93 50 10 4/9 490 1.4 2.6 表 4 JLHW227、JLHW286和JLHW287井钻井数据
井号 完钻井
深/m三开钻井
周期/d机械钻
速/(m·h−1)井径扩大率/% 非油层 油层 JLHW227 5710 25.75 11.8 1.1 2.18 JLHW286 5732 32.67 9.21 1.0 2.02 JLHW287 5919 31.25 9.62 1.1 2.18 3口井平均 5787 29.89 10.08 1.06 2.12 2021年22口井平均 5440 30.76 9.15 7.99 2.29 表 5 JLHW227、JLHW286和JLHW287井井下勘探数据
井号 试验井段/m 井下复杂率/% 复杂类型 每口井消耗量/m3 每米消耗量/m3 漏失量/m3 JLHW227 3380~5710 0 无 120 0.051 无 JLHW286 3380~5732 0 无 270 0.114 无 JLHW287 3410~5919 0 0 220 0.087 无 3口井平均 2397 0 无 204 0.085 无 2021年22口井平均 1841 9.72 井漏、气侵、井塌、遇阻 255 0.122 3883.5 -
[1] 项营,王玺,蒋官澄,等. 反相乳液聚合法合成凝胶微球及其封堵性能评价[J]. 钻井液与完井液,2020,37(3):275-281. doi: 10.3969/j.issn.1001-5620.2020.03.002XIANG Ying, WANG Xi, JIANG Guancheng, et al. Gel microsphere: synthesis through inverse emulsion polymerization and evaluation of its plugging capacity[J]. Drilling Fluid & Completion Fluid, 2020, 37(3):275-281. doi: 10.3969/j.issn.1001-5620.2020.03.002 [2] JIANG G C, SUN J S, HE Y B, et al. Novel water-based drilling and completion fluid technology to improve wellbore quality during drilling and protect unconventional reservoirs[J]. Engineering, 2022, 18(11):129-142. [3] 赵华强,彭勃. 聚合物微球在油田深部调驱技术中的研究进展[J]. 化工进展,2021,40(S2):75-80. doi: 10.16085/j.issn.1000-6613.2021-0560ZHAO Huaqiang, PENG Bo. Research progress of polymer microspheres in deep oil field control and displacement technology[J]. Chemical Industry and Engineering Progress, 2021, 40(S2):75-80. doi: 10.16085/j.issn.1000-6613.2021-0560 [4] 田圆芳,陶丹阳,杜文浩,等. 基于聚合物微球的复合降滤失剂的制备与性能评价[J]. 油田化学,2020,37(4):593-597. doi: 10.19346/j.cnki.1000-4092.2020.04.005TIAN Yuanfang, TAO Danyang, DU Wenhao, et al. Preparation and performance evaluation of compound fluid loss agent based on polymer microsphere[J]. Oilfield Chemistry, 2020, 37(4):593-597. doi: 10.19346/j.cnki.1000-4092.2020.04.005 [5] 刘锋报,闫丽丽,倪晓骁,等. 一种两性离子聚合物凝胶微球的制备与封堵性能[J]. 钻井液与完井液,2021,38(4):435-441. doi: 10.12358/j.issn.1001-5620.2021.04.006LIU Fengbao, YAN Lili, NI Xiaoxiao, et al. Preparation and plugging performance of zwitterionic polymer gel micro spheres[J]. Drilling Fluid & Completion Fluid, 2021, 38(4):435-441. doi: 10.12358/j.issn.1001-5620.2021.04.006 [6] WANG H Y, LIN M Q, CHEN D N, et al. Research on the rheological properties of cross-linked polymer microspheres with different microstructures[J]. Powder Technology, 2018, 331:310-321. doi: 10.1016/j.powtec.2018.03.045 [7] ŁUKASZCZYK J, CEBULSKA A. Synthesis of polymeric microspheres based on 3-chloro-2-hydroxypropyl methacrylate[J]. Macromolecular Symposia, 2001, 164(1):71-80. doi: 10.1002/1521-3900(200102)164:1<71::AID-MASY71>3.0.CO;2-8 [8] 马海霞,林梅钦,李明远,等. 交联聚合物微球体系性质研究[J]. 应用化工,2006,35(6):453-454,457. doi: 10.3969/j.issn.1671-3206.2006.06.017MA Haixia, LIN Meiqin, LI Mingyuan, et al. Study of property of linked polymer micro-ball[J]. Applied Chemical Industry, 2006, 35(6):453-454,457. doi: 10.3969/j.issn.1671-3206.2006.06.017 [9] 韩秀贞,李明远,林梅钦. 交联聚合物微球分散体系的性能评价[J]. 油气地质与采收率,2009,16(5):63-65. doi: 10.3969/j.issn.1009-9603.2009.05.018HAN Xiuzhen, LI Mingyuan, LIN Meiqin. Properties evaluation of linked polymer microspheres dispersed system[J]. Petroleum Geology and Recovery Efficiency, 2009, 16(5):63-65. doi: 10.3969/j.issn.1009-9603.2009.05.018 [10] 王伟吉,邱正松,黄维安,等. 纳米聚合物微球封堵剂的制备及特性[J]. 钻井液与完井液,2016,33(1):33-36.WANG Weiji, QIU Zhengsong, HUANG Weian, et al. Preparation and characteristics of Nano polymer microspheres used as plugging agent in drilling fluid[J]. Drilling Fluid & Completion Fluid, 2016, 33(1):33-36. [11] 朱霞,姚峰,钱志鸿. 聚合物微球溶液封堵性能影响因素研究[J]. 胶体与聚合物,2014,3(1):38-40. doi: 10.13909/j.cnki.1009-1815.2014.01.010ZHU Xia, YAO Feng, QIAN Zhihong. The influence factors on plugging characteristics of the polymer microsphere[J]. Chinese Journal of Colloid & Polymer, 2014, 3(1):38-40. doi: 10.13909/j.cnki.1009-1815.2014.01.010 [12] 刘义刚,李先杰,代磊阳,等. 不同粒径聚合物微球深部运移和封堵特性对比[J]. 油田化学,2021,38(3):440-445. doi: 10.19346/j.cnki.1000-4092.2021.03.011LIU Yigang, LI Xianjie, DAI Leiyang, et al. Comparative study on deep migration and plugging characteristic of polymer microsphere with different particle size[J]. Oilfield Chemistry, 2021, 38(3):440-445. doi: 10.19346/j.cnki.1000-4092.2021.03.011