Synthesis and Evaluation of a High Temperature Salt-Resistant Chain Polymer Filter Loss Reducer
-
摘要: 针对深井钻探中钻井液处理剂抗温抗复合盐性能不足的问题,以丙烯酰胺(AM)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)、N-乙烯基己内酰胺(NVCL)、二甲基二烯丙基氯化铵(DMDAAC)、烯丙醇聚氧乙烯醚(APEG)为单体,以过硫酸钾和亚硫酸氢钠作为氧化还原体系进行自由基共聚反应,合成了一种支链型聚合物降滤失剂(PAANDA)。通过实验优化确定了最优合成条件为:n(AM)∶n(AMPS)∶n(NVCL)∶n(DMDAAC)∶n(APEG)=50∶20∶5∶10∶15,反应温度为50 ℃,反应时间为4 h,引发剂用量为0.3%。利用傅里叶红外光谱(FT-IR)和核磁共振氢谱(1H- NMR)确定了聚合产物的分子结构,通过热重分析(TGA)测得PAANDA 热分解温度大于300 ℃,表明其具有良好的热稳定性。同时,应用于水基钻井液中,进一步评价PAANDA 对水基钻井液流变和滤失性能的影响。结果显示,当PAANDA 加量为2.0%时,180 ℃老化后API滤失量为4.0 mL,高温高压滤失量为22.6 mL(180 ℃),同时具有抗复合盐能力,抗盐钙能力优于国外同类产品 Driscal D。Abstract: A branched polymer filter loss reducer PAANDA has been developed to deal with the problems of poor high-temperature stability and poor salt resistance encountered in deep well drilling. Monomers used for the synthesis include acrylamide (AM), 2-acrylamide-2-methyl propane sulfonic acid (AMPS), N-vinyl caprolactam (NVCL), dimethyl diallyl ammonium chloride (DMDAAC) and allyl alcohol polyoxyethylene ether (APEG). Potassium persulphate and sodium bisulphite was used as a redox system for the radical polymerization reaction. Laboratory experiment was conducted to determine the optimum ratio of the raw reaction materials and optimum reaction conditions ad follows:n (AM)∶ n (AMPS)∶ n (NVCL)∶ n (DMDAAC)∶ n (APEG) = 50 : 20 : 5 : 10 : 15, reaction temperature = 50 °C, reaction time = 4 hours, concentration of the initiator = 0.3%. Using FTIR and 1H-NMR, the molecular structure of the polymerization product was determined. TGA analysis showed that the PAANDA filter loss reducer degrades at above 300 °C, indicating that the product has excellent thermal stability. The filtration control property of PAANDA was evaluated in water-based drilling fluids. It was found that at a water-based drilling fluid treated with 2.0% PAANDA has API filter loss of 4.0 mL and HTHP filter loss of 22.6 mL tested at 180 °C after aging the fluid at 180 °C. The PAANDA also performed better than Driscal D in resisting contamination from compound salts and calcium.
-
表 1 单体物质的量比对聚合物降滤失性能的影响
AM∶AMPS∶NVCL∶
DMDAAC∶APEGAV/
mPa·sPV/
mPa·sYP/
PaFLAPI/
mL50∶20∶10∶10∶10 12.0 7.5 4.5 13.5 40∶20∶10∶10∶20 11.5 8.5 3.0 16.2 50∶20∶5∶10∶15 13.5 9.0 4.5 10.5 50∶20∶15∶10∶5 16.0 10.5 5.5 12.8 表 2 在不同反应条件下的PAANDA性能
引发剂/
%T反应/
℃t反应/
h黏均分子量/
g·mol-1FLAPI/
mL0.2 60 6 1.1×105 10.8 0.3 60 6 1.3×105 9.7 0.4 60 6 8.5×104 11.2 0.3 50 6 1.5×105 8.9 0.3 40 6 7.0×104 11.4 0.3 50 5 1.6×105 8.6 0.3 50 4 1.6×105 8.0 0.3 50 3 9.2×104 10.2 表 3 降滤失剂PAANDA加量对淡水基浆的影响
PAANDA/
%AV/
mPa·sPV/
mPa·sYP/
PaFLAPI/
mLFLHTHP/
mL0 4.0 3.0 1.0 48.0 82.0 0.5 9.0 8.0 1.0 15.8 34.2 1.0 18.0 14.0 4.0 8.0 30.6 1.5 29.5 24.0 5.5 5.4 25.8 2.0 41.5 31.0 10.5 3.0 21.6 2.5 57.0 37.0 20.0 2.9 21.0 3.0 76.0 42.0 34.0 2.9 20.8 注:老化条件为160 ℃、16 h。 表 4 不同老化温度下含2%PAANDA淡水钻井液的性能
T老化/
℃AV/
mPa·sPV/
mPa·sYP/
PaFLAPI/
mLFLHTHP/
mL室温 48.0 28.0 20.0 2.5 150 46.5 28.0 17.5 2.8 20.8 160 41.5 31.0 10.5 3.0 21.6 170 39.0 30.0 9.0 3.3 21.8 180 35.5 27.0 8.5 4.0 22.6 190 27.0 22.0 5.0 8.1 35.1 200 24.5 20.0 4.5 9.9 40.4 表 5 不同NaCl浓度下含2%PDAADA淡水钻井液的性能
NaCl/
%AV/
mPa·sPV/
mPa·sYP/
PaFLAPI/
mLFLHTHP/
mL0 35.5 27.0 8.5 4.0 22.6 5 26.0 18.0 8.0 4.1 23.6 10 23.0 17.0 6.0 4.5 24.0 20 19.5 15.0 4.5 4.5 24.6 30 14.5 11.0 3.5 4.8 26.0 36(饱和) 14.0 11.0 3.0 5.2 27.0 注:老化条件为180 ℃、16 h。 表 6 2%降滤失剂在复合盐水基浆中的性能
NaCl/
%CaCl2/
%AV/
mPa·sPV/
mPa·sYP/
PaFLAPI/
mLFLHTHP/
mL15 0.5 17.5 14.0 3.5 4.6 25.6 15 1.0 12.5 10.0 2.5 6.8 28.8 15 1.5 10.0 8.0 2.0 8.1 39.0 30 0.5 12.0 10.0 2.0 6.6 32.2 30 1.0 10.5 9.0 1.5 10.8 51.8 30 1.5 11.5 9.5 2.0 13.6 68.0 注:老化条件为180 ℃、16 h。 表 7 淡水基浆加入不同处理剂老化后的Zeta电位值
NaCl/% CaCl2/% PAANDA/% ζ/mV 0 0 0 −12.5 0 0 2 −41.2 15 1.0 0 −7.6 15 1.0 2 −33.2 15 1.5 2 −16.7 -
[1] 何立成,唐波. 准噶尔盆地超深井钻井技术现状与发展建议[J]. 石油钻探技术,2022,50(5):1-8.HE Licheng, TANG Bo. The up to date technologies of ultra-deep well drilling in Junggar basin and suggestions for further improvements[J]. Petroleum Drilling Techniques, 2022, 50(5):1-8. [2] 伍贤柱. 川渝气田深井和超深井钻井技术[J]. 天然气工业,2008(4):9-13.WU Xianzhu. Drilling technology in deep and ultradeep gas wells in the Sichuan and Chongqing gas fields[J]. Natural Gas Industry, 2008(4):9-13. [3] 苏义脑,路保平,刘岩生,等. 中国陆上深井超深井钻完井技术现状及攻关建议[J]. 石油钻采工艺,2020,42(5):527-542.SU Yinao, LU Baoping, LIU Yansheng, et al. Status and research suggestions on the drilling and completion technologiesfor onshore deep and ultra deep wells in China[J]. Oil Drilling & Production Technology, 2020, 42(5):527-542. [4] 刘磊,范伟东,陈红举,等. 塔河油田超深超稠油地热保温开采技术[J]. 新疆石油天然气,2022,18(2):92-97.LIU Lei, FAN Weidong, CHEN Hongju, et al. Geothermal-insulating production technology for ultra-deep and ultra-heavy oil in Tahe oilfield[J]. Xinjiang Oil & Gas, 2022, 18(2):92-97. [5] 魏昱,白龙,王骁男. 川深1井钻井液关键技术[J]. 钻井液与完井液,2019(36):194-201.WEI Yu, BAI Long, WANG Xiaonan. Key drilling fluid technology for well Chuanshen-1[J]. Drilling Fluid & Completion Fluid, 2019(36):194-201. [6] 刘四海,蔡利山. 深井超深井钻探工艺技术[J]. 钻井液与完井液,2002(6):121-126.LIU Sihai, CAI Lishan. Deep and ultra deep well drilling technology[J]. Drilling Fluid & Completion Fluid, 2002(6):121-126. [7] 黄治中,杨玉良,马世昌,等. 抗220 ℃高温水基钻井液技术研究[J]. 新疆石油天然气,2009,5(3):52-55.HUANG Zhizhong, YANG Yuliang, MA Shichang,et al. Study on water-based drilling fluids resisting high temperature[J]. Xinjiang Oil & Gas, 2009, 5(3):52-55. [8] 陈德军,雒和敏,铁成军,等. 钻井液降滤失剂研究述论[J]. 油田化学,2013,30(2):295-300.CHEN Dejun, LUO Hemin, TIE Chengjun, et al. Summary of fluid loss additive used for drilling fluid[J]. Oilfield Chemistry, 2013, 30(2):295-300. [9] 高伟, 李银婷, 余福春, 等. 抗超高温水基钻井液用聚合物降滤失剂的研制[J]. 钻井液与完井液, 2021, 38(2): 146-151.GAO Wei, LI Yinting, YU Fuchun, et al. Development of polymer filter loss reducer for ultra-high temperature water base drilling fluids [J] Drilling Fluid & Completion Fluid, 2021, 38 (2): 146-151. [10] 全红平, 张拓森, 黄志宇, 等. 抗高温耐盐钻井液降滤失剂的合成与评价[J]. 应用化工, 2022, 51(6): 1691-1696.QUAN Hongping, ZHANG Tusen, HUANG Zhiyu, et al. Synthesis and evaluation of high-temperature and salt resistant fluid loss reducer [J] Applied Chemical Industry, 2022, 51 (6): 1691-1696. [11] 常晓峰, 孙金声, 吕开河,等. 一种新型抗高温降滤失剂的研究和应用[J]. 钻井液与完井液, 2019, 36(4): 420-426.CHANG Xiaofeng, SUN Jinsheng, LYU Kaihe, et al. Research and application of a novel high temperature filter loss reducer [J] Drilling Fluid & Completion Fluid, 2019, 36 (4): 420-426. [12] 胡正文,任庭飞,邓小刚,等. 聚合物降滤失剂PAAAA的合成及其性能评价[J]. 石油化工,2020,49(4):378-384.HU Wenwen, REN Tingfei, DENG Xiaogang, et al. Synthesis and property evaluation of polymer fluid loss additive PAAAA[J]. Petrochemical Technology, 2020, 49(4):378-384. [13] 张凤英,杨光,刘延彪,等. 高温高盐油藏用化学驱油剂的研究[J]. 精细石油化工进展,2005,6(5):8-12.ZHANG Fengying, YANG Guang, LIU Yanbiao, et al. Development of chemical oil displacement agent for high temperature and high salinity reservoir[J]. Advances in Fine Petrochemicals, 2005, 6(5):8-12. [14] 孙振平,黄雄荣. 烯丙基聚乙二醇系聚羧酸类减水剂的研究[J]. 建筑材料学报,2009,12(4):407-412.SUN Zhenping, HUANG Xiongrong. Study on allyl polyethylene glycol based polycarboxylate superplasticizer[J]. Journal of Building Materials, 2009, 12(4):407-412. [15] 全红平,明显森,黄志宇,等. 聚氧乙烯基型降滤失剂SJ-1的合成与性能评价[J]. 精细化工,2013,30(5):570-574.QUAN Hongping, MING Xiansen, HUANG Zhiyu, et al. Synthesis and evaluation of fluid loss additive SJ-1 for polyoxyethylene type[J]. Fine Chemicals, 2013, 30(5):570-574. [16] 刘鹭. 水基钻井液抗高温温度保护剂和降失水剂研究[D]. 西南石油大学, 2014.LIU Lu. Research on high temperature resistant temperature protector and fluid loss reducer for water-based drilling fluid [D]. Southwest Petroleum University, 2014. [17] 张太亮,刘婉琴,李亮. 四元共聚钻井液降滤失剂的合成与性能评价[J]. 精细化工,2014,31(10):1269-1274.ZHANG Tailiang, LIU Wanqin, LI Liang. Synthesis and performance evaluation of quardripolymer fluid loss additive[J]. Fine Chemicals, 2014, 31(10):1269-1274. [18] 杨小敏,睢文云,郑伟. 聚醚醇钻井液在花X39井的应用[J]. 新疆石油天然气,2020,16(3):38-41.YANG Xiaomin, SUI Wenyun, ZHENG Wei. Application of polyether alcohol drilling fluid in Hua X39 well[J]. Xinjiang Oil & Gas, 2020, 16(3):38-41. [19] 杨丽丽,刘瀚卿,敖天,等. 分散聚合法制备聚丙烯酰胺降滤失剂的研究[J]. 钻井液与完井液,2022,39(2):158-163.YANG Lili, LIU Hanqing, AO Tian, et al. Study and application of dispersion polymerization in preparing PAM filter loss reducer[J]. Drilling Fluid & Completion Fluid, 2022, 39(2):158-163. [20] 张高波,李培海,乔汉,等. 控制水基钻井液高温高压滤失量的方法及途径[J]. 钻井液与完井液,2022,39(4):406-414.ZHANG Gaobo, LI Peihai, QIAO Han, et al. Methods of controlling low HTHP filtration rate of water based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2022, 39(4):406-414. [21] ASSEM Y, CHAFFEY M H , BARNER K C, et al . Controlled/living ring-closing cyclopolymerization of diallyldimethy lammonium chloride via the reversible addition fragmentation chain transfer process[J]. Macromolecules, 2007, 40(11), 3907-3913. [22] 郑海洪,李建波,罗庆英,等. 钻井液用两性离子聚合物降滤失剂的研究[J]. 天然气勘探与开发,2009,32(3):59-62.ZHENG Haihong, LI Jianbo, LUO Qingying, et al. Flitrate reducer of zwitterionic polymer for drilling fluid[J]. Natural Gas Exploration and Development, 2009, 32(3):59-62. [23] 徐运波,蓝强,张斌,等. 梳型聚合物降滤失剂的合成及其在深井盐水钻井液中的应用[J]. 钻井液与完井液,2017,34(1):33-38.XU Yunbo, LAN Qiang, ZHANG Bin, et al. Synthesis and application of a comb polymer filter loss reducer in deep well saltwater drilling fluid[J]. Drilling Fluid & Completion Fluid, 2017, 34(1):33-38. [24] 杨以霞. 聚氧乙烯醚梳型聚合物的合成及其对蒙脱土分散体系稳定性的影响[D]. 山东大学, 2015.YANG Yixia. Synthesis of polyoxyethylene ether comb-like copolymer and its effect on the stability of montmorillonite dispersion[D]. Shandong University, 2015