留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抗高温抗复合盐支链型聚合物降滤失剂的合成及其性能

邢林庄 袁玥辉 叶成 屈沅治 孙晓瑞 高世峰 任晗

邢林庄,袁玥辉,叶成,等. 抗高温抗复合盐支链型聚合物降滤失剂的合成及其性能[J]. 钻井液与完井液,2023,40(6):703-710 doi: 10.12358/j.issn.1001-5620.2023.06.002
引用本文: 邢林庄,袁玥辉,叶成,等. 抗高温抗复合盐支链型聚合物降滤失剂的合成及其性能[J]. 钻井液与完井液,2023,40(6):703-710 doi: 10.12358/j.issn.1001-5620.2023.06.002
XING Linzhuang, YUAN Yuehui, YE Cheng, et al.Synthesis and evaluation of a high temperature salt-resistant chain polymer filter loss reducer[J]. Drilling Fluid & Completion Fluid,2023, 40(6):703-710 doi: 10.12358/j.issn.1001-5620.2023.06.002
Citation: XING Linzhuang, YUAN Yuehui, YE Cheng, et al.Synthesis and evaluation of a high temperature salt-resistant chain polymer filter loss reducer[J]. Drilling Fluid & Completion Fluid,2023, 40(6):703-710 doi: 10.12358/j.issn.1001-5620.2023.06.002

抗高温抗复合盐支链型聚合物降滤失剂的合成及其性能

doi: 10.12358/j.issn.1001-5620.2023.06.002
详细信息
    作者简介:

    邢林庄,高级工程师,现在主要从事钻井相关技术与管理工作。电话 18999505658;E-mail:xinglz@petrochina.com.cn

  • 中图分类号: TE254.4

Synthesis and Evaluation of a High Temperature Salt-Resistant Chain Polymer Filter Loss Reducer

  • 摘要: 针对深井钻探中钻井液处理剂抗温抗复合盐性能不足的问题,以丙烯酰胺(AM)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)、N-乙烯基己内酰胺(NVCL)、二甲基二烯丙基氯化铵(DMDAAC)、烯丙醇聚氧乙烯醚(APEG)为单体,以过硫酸钾和亚硫酸氢钠作为氧化还原体系进行自由基共聚反应,合成了一种支链型聚合物降滤失剂(PAANDA)。通过实验优化确定了最优合成条件为:n(AM)∶n(AMPS)∶n(NVCL)∶n(DMDAAC)∶n(APEG)=50∶20∶5∶10∶15,反应温度为50 ℃,反应时间为4 h,引发剂用量为0.3%。利用傅里叶红外光谱(FT-IR)和核磁共振氢谱(1H- NMR)确定了聚合产物的分子结构,通过热重分析(TGA)测得PAANDA 热分解温度大于300 ℃,表明其具有良好的热稳定性。同时,应用于水基钻井液中,进一步评价PAANDA 对水基钻井液流变和滤失性能的影响。结果显示,当PAANDA 加量为2.0%时,180 ℃老化后API滤失量为4.0 mL,高温高压滤失量为22.6 mL(180 ℃),同时具有抗复合盐能力,抗盐钙能力优于国外同类产品 Driscal D。

     

  • 图  1  降滤失剂PAANDA的分子结构

    图  2  降滤失剂PAANDA的FTIR图谱

    图  3  降滤失剂 PAANDA 的 1H-NMR 图谱

    图  4  降滤失剂PAANDA的热重分析图谱

    图  5  Driscal-D与降滤失剂 PAANDA在不同 基浆中的性能(在180 ℃老化16 h)

    图  6  降滤失剂 PAANDA经不同温度老化后的吸附性能

    表  1  单体物质的量比对聚合物降滤失性能的影响

    AM∶AMPS∶NVCL∶
    DMDAAC∶APEG
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    FLAPI/
    mL
    50∶20∶10∶10∶1012.07.54.513.5
    40∶20∶10∶10∶2011.58.53.016.2
    50∶20∶5∶10∶1513.59.04.510.5
    50∶20∶15∶10∶516.010.55.512.8
    下载: 导出CSV

    表  2  在不同反应条件下的PAANDA性能

    引发剂/
    %
    T反应/
    t反应/
    h
    黏均分子量/
    g·mol-1
    FLAPI/
    mL
    0.26061.1×10510.8
    0.36061.3×1059.7
    0.46068.5×10411.2
    0.35061.5×1058.9
    0.34067.0×10411.4
    0.35051.6×1058.6
    0.35041.6×1058.0
    0.35039.2×10410.2
    下载: 导出CSV

    表  3  降滤失剂PAANDA加量对淡水基浆的影响

    PAANDA/
    %
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    FLAPI/
    mL
    FLHTHP/
    mL
    04.03.01.048.082.0
    0.59.08.01.015.834.2
    1.018.014.04.08.030.6
    1.529.524.05.55.425.8
    2.041.531.010.53.021.6
    2.557.037.020.02.921.0
    3.076.042.034.02.920.8
      注:老化条件为160 ℃、16 h。
    下载: 导出CSV

    表  4  不同老化温度下含2%PAANDA淡水钻井液的性能

    T老化/
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    FLAPI/
    mL
    FLHTHP/
    mL
    室温48.028.020.02.5
    15046.528.017.52.820.8
    16041.531.010.53.021.6
    17039.030.09.03.321.8
    18035.527.08.54.022.6
    19027.022.05.08.135.1
    20024.520.04.59.940.4
    下载: 导出CSV

    表  5  不同NaCl浓度下含2%PDAADA淡水钻井液的性能

    NaCl/
    %
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    FLAPI/
    mL
    FLHTHP/
    mL
    035.527.08.54.022.6
    526.018.08.04.123.6
    1023.017.06.04.524.0
    2019.515.04.54.524.6
    3014.511.03.54.826.0
    36(饱和)14.011.03.05.227.0
      注:老化条件为180 ℃、16 h。
    下载: 导出CSV

    表  6  2%降滤失剂在复合盐水基浆中的性能

    NaCl/
    %
    CaCl2/
    %
    AV/
    mPa·s
    PV/
    mPa·s
    YP/
    Pa
    FLAPI/
    mL
    FLHTHP/
    mL
    150.517.514.03.54.625.6
    151.012.510.02.56.828.8
    151.510.08.02.08.139.0
    300.512.010.02.06.632.2
    301.010.59.01.510.851.8
    301.511.59.52.013.668.0
      注:老化条件为180 ℃、16 h。
    下载: 导出CSV

    表  7  淡水基浆加入不同处理剂老化后的Zeta电位值

    NaCl/%CaCl2/%PAANDA/%ζ/mV
    0 0 0 −12.5
    0 0 2 −41.2
    15 1.0 0 −7.6
    15 1.0 2 −33.2
    15 1.5 2 −16.7
    下载: 导出CSV
  • [1] 何立成,唐波. 准噶尔盆地超深井钻井技术现状与发展建议[J]. 石油钻探技术,2022,50(5):1-8.

    HE Licheng, TANG Bo. The up to date technologies of ultra-deep well drilling in Junggar basin and suggestions for further improvements[J]. Petroleum Drilling Techniques, 2022, 50(5):1-8.
    [2] 伍贤柱. 川渝气田深井和超深井钻井技术[J]. 天然气工业,2008(4):9-13.

    WU Xianzhu. Drilling technology in deep and ultradeep gas wells in the Sichuan and Chongqing gas fields[J]. Natural Gas Industry, 2008(4):9-13.
    [3] 苏义脑,路保平,刘岩生,等. 中国陆上深井超深井钻完井技术现状及攻关建议[J]. 石油钻采工艺,2020,42(5):527-542.

    SU Yinao, LU Baoping, LIU Yansheng, et al. Status and research suggestions on the drilling and completion technologiesfor onshore deep and ultra deep wells in China[J]. Oil Drilling & Production Technology, 2020, 42(5):527-542.
    [4] 刘磊,范伟东,陈红举,等. 塔河油田超深超稠油地热保温开采技术[J]. 新疆石油天然气,2022,18(2):92-97.

    LIU Lei, FAN Weidong, CHEN Hongju, et al. Geothermal-insulating production technology for ultra-deep and ultra-heavy oil in Tahe oilfield[J]. Xinjiang Oil & Gas, 2022, 18(2):92-97.
    [5] 魏昱,白龙,王骁男. 川深1井钻井液关键技术[J]. 钻井液与完井液,2019(36):194-201.

    WEI Yu, BAI Long, WANG Xiaonan. Key drilling fluid technology for well Chuanshen-1[J]. Drilling Fluid & Completion Fluid, 2019(36):194-201.
    [6] 刘四海,蔡利山. 深井超深井钻探工艺技术[J]. 钻井液与完井液,2002(6):121-126.

    LIU Sihai, CAI Lishan. Deep and ultra deep well drilling technology[J]. Drilling Fluid & Completion Fluid, 2002(6):121-126.
    [7] 黄治中,杨玉良,马世昌,等. 抗220 ℃高温水基钻井液技术研究[J]. 新疆石油天然气,2009,5(3):52-55.

    HUANG Zhizhong, YANG Yuliang, MA Shichang,et al. Study on water-based drilling fluids resisting high temperature[J]. Xinjiang Oil & Gas, 2009, 5(3):52-55.
    [8] 陈德军,雒和敏,铁成军,等. 钻井液降滤失剂研究述论[J]. 油田化学,2013,30(2):295-300.

    CHEN Dejun, LUO Hemin, TIE Chengjun, et al. Summary of fluid loss additive used for drilling fluid[J]. Oilfield Chemistry, 2013, 30(2):295-300.
    [9] 高伟, 李银婷, 余福春, 等. 抗超高温水基钻井液用聚合物降滤失剂的研制[J]. 钻井液与完井液, 2021, 38(2): 146-151.

    GAO Wei, LI Yinting, YU Fuchun, et al. Development of polymer filter loss reducer for ultra-high temperature water base drilling fluids [J] Drilling Fluid & Completion Fluid, 2021, 38 (2): 146-151.
    [10] 全红平, 张拓森, 黄志宇, 等. 抗高温耐盐钻井液降滤失剂的合成与评价[J]. 应用化工, 2022, 51(6): 1691-1696.

    QUAN Hongping, ZHANG Tusen, HUANG Zhiyu, et al. Synthesis and evaluation of high-temperature and salt resistant fluid loss reducer [J] Applied Chemical Industry, 2022, 51 (6): 1691-1696.
    [11] 常晓峰, 孙金声, 吕开河,等. 一种新型抗高温降滤失剂的研究和应用[J]. 钻井液与完井液, 2019, 36(4): 420-426.

    CHANG Xiaofeng, SUN Jinsheng, LYU Kaihe, et al. Research and application of a novel high temperature filter loss reducer [J] Drilling Fluid & Completion Fluid, 2019, 36 (4): 420-426.
    [12] 胡正文,任庭飞,邓小刚,等. 聚合物降滤失剂PAAAA的合成及其性能评价[J]. 石油化工,2020,49(4):378-384.

    HU Wenwen, REN Tingfei, DENG Xiaogang, et al. Synthesis and property evaluation of polymer fluid loss additive PAAAA[J]. Petrochemical Technology, 2020, 49(4):378-384.
    [13] 张凤英,杨光,刘延彪,等. 高温高盐油藏用化学驱油剂的研究[J]. 精细石油化工进展,2005,6(5):8-12.

    ZHANG Fengying, YANG Guang, LIU Yanbiao, et al. Development of chemical oil displacement agent for high temperature and high salinity reservoir[J]. Advances in Fine Petrochemicals, 2005, 6(5):8-12.
    [14] 孙振平,黄雄荣. 烯丙基聚乙二醇系聚羧酸类减水剂的研究[J]. 建筑材料学报,2009,12(4):407-412.

    SUN Zhenping, HUANG Xiongrong. Study on allyl polyethylene glycol based polycarboxylate superplasticizer[J]. Journal of Building Materials, 2009, 12(4):407-412.
    [15] 全红平,明显森,黄志宇,等. 聚氧乙烯基型降滤失剂SJ-1的合成与性能评价[J]. 精细化工,2013,30(5):570-574.

    QUAN Hongping, MING Xiansen, HUANG Zhiyu, et al. Synthesis and evaluation of fluid loss additive SJ-1 for polyoxyethylene type[J]. Fine Chemicals, 2013, 30(5):570-574.
    [16] 刘鹭. 水基钻井液抗高温温度保护剂和降失水剂研究[D]. 西南石油大学, 2014.

    LIU Lu. Research on high temperature resistant temperature protector and fluid loss reducer for water-based drilling fluid [D]. Southwest Petroleum University, 2014.
    [17] 张太亮,刘婉琴,李亮. 四元共聚钻井液降滤失剂的合成与性能评价[J]. 精细化工,2014,31(10):1269-1274.

    ZHANG Tailiang, LIU Wanqin, LI Liang. Synthesis and performance evaluation of quardripolymer fluid loss additive[J]. Fine Chemicals, 2014, 31(10):1269-1274.
    [18] 杨小敏,睢文云,郑伟. 聚醚醇钻井液在花X39井的应用[J]. 新疆石油天然气,2020,16(3):38-41.

    YANG Xiaomin, SUI Wenyun, ZHENG Wei. Application of polyether alcohol drilling fluid in Hua X39 well[J]. Xinjiang Oil & Gas, 2020, 16(3):38-41.
    [19] 杨丽丽,刘瀚卿,敖天,等. 分散聚合法制备聚丙烯酰胺降滤失剂的研究[J]. 钻井液与完井液,2022,39(2):158-163.

    YANG Lili, LIU Hanqing, AO Tian, et al. Study and application of dispersion polymerization in preparing PAM filter loss reducer[J]. Drilling Fluid & Completion Fluid, 2022, 39(2):158-163.
    [20] 张高波,李培海,乔汉,等. 控制水基钻井液高温高压滤失量的方法及途径[J]. 钻井液与完井液,2022,39(4):406-414.

    ZHANG Gaobo, LI Peihai, QIAO Han, et al. Methods of controlling low HTHP filtration rate of water based drilling fluids[J]. Drilling Fluid & Completion Fluid, 2022, 39(4):406-414.
    [21] ASSEM Y, CHAFFEY M H , BARNER K C, et al . Controlled/living ring-closing cyclopolymerization of diallyldimethy lammonium chloride via the reversible addition fragmentation chain transfer process[J]. Macromolecules, 2007, 40(11), 3907-3913.
    [22] 郑海洪,李建波,罗庆英,等. 钻井液用两性离子聚合物降滤失剂的研究[J]. 天然气勘探与开发,2009,32(3):59-62.

    ZHENG Haihong, LI Jianbo, LUO Qingying, et al. Flitrate reducer of zwitterionic polymer for drilling fluid[J]. Natural Gas Exploration and Development, 2009, 32(3):59-62.
    [23] 徐运波,蓝强,张斌,等. 梳型聚合物降滤失剂的合成及其在深井盐水钻井液中的应用[J]. 钻井液与完井液,2017,34(1):33-38.

    XU Yunbo, LAN Qiang, ZHANG Bin, et al. Synthesis and application of a comb polymer filter loss reducer in deep well saltwater drilling fluid[J]. Drilling Fluid & Completion Fluid, 2017, 34(1):33-38.
    [24] 杨以霞. 聚氧乙烯醚梳型聚合物的合成及其对蒙脱土分散体系稳定性的影响[D]. 山东大学, 2015.

    YANG Yixia. Synthesis of polyoxyethylene ether comb-like copolymer and its effect on the stability of montmorillonite dispersion[D]. Shandong University, 2015
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  501
  • HTML全文浏览量:  160
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-14
  • 修回日期:  2023-07-28
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回

    欢迎订阅

    2025年《钻井液与完井液》,邮发代号为:18-423,编辑部不受理订阅业务。