留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微球聚合物强化水基钻井液流变稳定性及其分子模拟研究

许林 许力 吴舒琪 包宇 王晓棠 沈佳敏 孟双 王浪

许林,许力,吴舒琪,等. 微球聚合物强化水基钻井液流变稳定性及其分子模拟研究[J]. 钻井液与完井液,2023,40(6):693-702 doi: 10.12358/j.issn.1001-5620.2023.06.001
引用本文: 许林,许力,吴舒琪,等. 微球聚合物强化水基钻井液流变稳定性及其分子模拟研究[J]. 钻井液与完井液,2023,40(6):693-702 doi: 10.12358/j.issn.1001-5620.2023.06.001
XU Lin, XU Li, WU Shuqi, et al.Study on polymer microspheres for their action in enhancing rheology stability of drilling fluids through molecular simulation[J]. Drilling Fluid & Completion Fluid,2023, 40(6):693-702 doi: 10.12358/j.issn.1001-5620.2023.06.001
Citation: XU Lin, XU Li, WU Shuqi, et al.Study on polymer microspheres for their action in enhancing rheology stability of drilling fluids through molecular simulation[J]. Drilling Fluid & Completion Fluid,2023, 40(6):693-702 doi: 10.12358/j.issn.1001-5620.2023.06.001

微球聚合物强化水基钻井液流变稳定性及其分子模拟研究

doi: 10.12358/j.issn.1001-5620.2023.06.001
基金项目: 舟山市科技计划项目”海洋油气井密封损伤的压力控释靶向修复技术研发”(2019C21006)、浙江省基础公益研究项目”海洋油气开发微泄漏压差激活密封剂及其自适应修复机理研究”(LGG20E040002)。
详细信息
    作者简介:

    许林,副教授,博士,1979 年生,毕业于浙江大学物理化学专业,现在从事油田化学、计算化学、材料科学等方面研究工作。电话13567661648;E-mail: xuhu_11@yeah.net。

  • 中图分类号: TE254.1

Study on Polymer Microspheres for Their Action in Enhancing Rheology Stability of Drilling Fluids Through Molecular Simulation

  • 摘要: 聚合物分子空间构型从一维线型向三维体型转变,是改变传统油田化学处理剂分子设计的新思路,有利于新型多功能水基钻井液聚合物处理剂开发。为阐明体型高分子形态特征及其作为钻井液处理剂的有效功能,采用实验合成、结构表征、性能评价与分子模拟相结合的方法,系统开展了微球聚合物PAA-AM-AMPS强化水基钻井液稳定性研究。首先,合成了具有体型结构的微球聚合物PAA-AM-AMPS,评价了微球聚合物微观结构及其在恒流变和超高温水基钻井液体系的核心作用;然后,基于体型高分子基团空间分布的“补偿效应”模型,从分子水平揭示了体型构象对高分子-膨润土片层吸附的强化作用。研究结果显示:合成体型聚合物PAA-AM-AMPS是一种具有核-壳结构的微球粒子,平均粒径为198.3 nm;微球聚合物热解分为5个阶段,空间构型展示了良好热稳定性;微球聚合物分子具有内紧外疏的空间构型,活性基团—COOH、—CO(NH2)、—SO3H在球壳上的分布确定了体型结构活性位点,其中羧基C=O是主导活性基团;比较了链型和球型聚集态结构,后者具有更小的回转半径Rg和更大的径向分布函数g(r),显示了球型构象不仅提高结构的温度稳定性,也有利于维持壳层有效活性基团数量,确保与黏土片层的吸附缔合作用,最终提高水基钻井液宏观性能的稳定。

     

  • 图  1  微球聚合物粒径及形貌特征

    图  2  微球聚合物FTIR光谱曲线

    图  3  微球聚合物TG-DSC曲线

    图  4  水基钻井液A和B在中低温4 ℃、10 ℃、30 ℃、65 ℃的流变参数比较

    图  5  水基钻井液在40 ~ 240 ℃连续升温过程中剪切应力变化

    图  6  单体AA、AM及AA-AM-AMPS 重复结构单元静电势及前线轨道

    图  7  微球高分子PAA-AM-AMPS构象特征:(a)球型全原子模型构象;(b)粗粒化模型基团分布;(c)有效基团补偿

    图  8  不同PAA-AM-AMPS构象g(r)值随温度变化

    图  9  不同PAA-AM-AMPS聚集态 结构回转半径随时间变化

  • [1] 谢彬强,邱正松,黄维安,等. 高性能水基钻井液增黏剂研发思路探讨[J]. 钻井液与完井液,2012,29(4):75-80. doi: 10.3969/j.issn.1001-5620.2012.04.022

    XIE Binqiang, QIU Zhengsong, HUANG Weian, et al. Research progress of viscosifier used in water-based drilling fluid[J]. Drilling Fluid & Completion Fluid, 2012, 29(4):75-80. doi: 10.3969/j.issn.1001-5620.2012.04.022
    [2] 王中华. 国内钻井液及处理剂发展评述[J]. 中外能源,2013,18(10):34-43. doi: 10.3969/j.issn.1673-579X.2013.10.006

    WANG Zhonghua. The development overview on the domestic drilling fluids and drilling fluid additives[J]. Sino-global Energy, 2013, 18(10):34-43. doi: 10.3969/j.issn.1673-579X.2013.10.006
    [3] 刘合,金旭,丁彬. 纳米技术在石油勘探开发领域的应用[J]. 石油勘探与开发,2016,43(6):1014-1021.

    LIU He, JIN Xu, DING Bin. Application of nanotechnology in petroleum exploration and development[J]. Petroleum Exploration and Development, 2016, 43(6):1014-1021.
    [4] 孙金声,黄贤斌,吕开河,等. 提高水基钻井液高温稳定性的方法、技术现状与研究进展[J]. 中国石油大学学报(自然科学版),2019,43(5):73-81.

    SUN Jinsheng, HUANG Xianbin, LYU Kaihe, et al. Methods, technical progress and research advance of improving high-temperature stability of water based drilling fluids[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43(5):73-81.
    [5] 王中华. 高性能钻井液处理剂设计思路[J]. 中外能源,2013,18(1):36-46.

    WANG Zhonghua. The design ideas for high-performance drilling fluid additives[J]. Sino-global Energy, 2013, 18(1):36-46.
    [6] 钟汉毅,高鑫,邱正松,等. 树枝状聚合物在钻井液中的应用研究进展[J]. 钻井液与完井液,2019,36(4):397-406. doi: 10.3969/j.issn.1001-5620.2019.04.001

    ZHONG Hanyi, GAO Xin, QIU Zhengsong, et al. Progress in applying and studying dendrimers in drilling fluids[J]. Drilling Fluid & Completion Fluid, 2019, 36(4):397-406. doi: 10.3969/j.issn.1001-5620.2019.04.001
    [7] XIE G, LUO P Y, DENG M Y, et al. Hyperbranched polyamine as nano-plugging agent used in water-based drilling fluid[J]. Nanoscience and Nanotechnology Letters, 2017, 9(3):310-315. doi: 10.1166/nnl.2017.2293
    [8] 徐琳,邓明毅,郭拥军,等. 纳米SiO2接枝超支化聚酰胺的合成及性能评价[J]. 石油化工,2016,45(11):1352-1356. doi: 10.3969/j.issn.1000-8144.2016.11.011

    XU Lin, DENG Mingyi, GUO Yongjun, et al. Synthesis and performance evaluation of nano SiO2 grafted with hyper-branched polyamide[J]. Petrochemical Technology, 2016, 45(11):1352-1356. doi: 10.3969/j.issn.1000-8144.2016.11.011
    [9] XU L, XU M B, ZHAO L, et al. Experimental investigations into the performance of a flat-rheology water-based drilling fluid[J]. SPE Journal, 2014, 19(1):69-77. doi: 10.2118/163107-PA
    [10] 高涵,许林,许明标,等. 深水水基恒流变钻井液流变特性研究[J]. 钻井液与完井液,2018,35(3):60-67. doi: 10.3969/j.issn.1001-5620.2018.03.010

    GAO Han, XU Lin, XU Mingbiao, et al. Study on rheology of consistent rheology water base drilling fluid for deep water drilling[J]. Drilling Fluid & Completion Fluid, 2018, 35(3):60-67. doi: 10.3969/j.issn.1001-5620.2018.03.010
    [11] KREER T. Polymer-brush lubrication: a review of recent theoretical advances[J]. Soft Matter, 2016, 12(15):3479-3501. doi: 10.1039/C5SM02919H
    [12] 许林,蒋孟晨,许洁,等. 复合压差激活密封剂的设计及其封堵性能[J]. 天然气工业,2020,40(3):107-114. doi: 10.3787/j.issn.1000-0976.2020.03.013

    XU Lin, JIANG Mengchen, XU Jie, et al. Design and plugging property of composite pressure activated sealant[J]. Natural Gas Industry, 2020, 40(3):107-114. doi: 10.3787/j.issn.1000-0976.2020.03.013
    [13] 李龙,马茶,苑旭波,等. 树枝状聚合物的合成及其在油田化学中的应用[J]. 现代化工,2012,32(6):16-21. doi: 10.3969/j.issn.0253-4320.2012.06.004

    LI Long, MA Cha, YUAN Xubo, et al. Synthesis and application of dendrimers in oilfield chemistry[J]. Modern Chemical Industry, 2012, 32(6):16-21. doi: 10.3969/j.issn.0253-4320.2012.06.004
    [14] 黄孟,许林,许洁,等. 水基恒流变钻井液流型调节剂的制备与性能评价[J]. 油田化学,2018,35(2):191-196,202.

    HUANG Meng, XU Lin, XU Jie, et al. Evaluation on preparation and performance of rheological modifier used in flat-rheology water-based drilling fluid[J]. Oilfield Chemistry, 2018, 35(2):191-196,202.
    [15] XU L, XU M B, WEI Y S, et al. An autonomously self-gel-breaking, highly reservoir protective completion fluid tailored for gel-free processing in multi-lateral well construction[J]. Journal of Petroleum Science and Engineering, 2022, 211:110136. doi: 10.1016/j.petrol.2022.110136
    [16] 许洁,乌效鸣,朱永宜,等. 抗240℃超高温水基钻井液室内研究[J]. 钻井液与完井液,2015,32(1):10-13.

    XU Jie, WU Xiaoming, ZHU Yongyi, et al. Laboratory study on ultra high temperature water base mud[J]. Drilling Fluid & Completion Fluid, 2015, 32(1):10-13.
    [17] ABBASI E, AVAL S F, AKBARZADEH A, et al. Dendrimers: synthesis, applications, and properties[J]. Nanoscale Research Letters, 2014, 9(1):247. doi: 10.1186/1556-276X-9-247
    [18] HA B Y, JUNG Y. Polymers under confinement: single polymers, how they interact, and as model chromosomes[J]. Soft Matter, 2015, 11(12):2333-2352. doi: 10.1039/C4SM02734E
    [19] MARRINK S J, DE VRIES A H, MARK A E. Coarse grained model for semiquantitative lipid simulations[J]. The Journal of Physical Chemistry B, 2004, 108(2):750-760. doi: 10.1021/jp036508g
    [20] MONTICELLI L, KANDASAMY S K, PERIOLE X, et al. The martini coarse-grained force field: extension to proteins[J]. Journal of Chemical Theory and Computation, 2008, 4(5):819-834. doi: 10.1021/ct700324x
    [21] BERENDSEN H J C, POSTMA J P M, VAN GUNSTEREN W F, et al. Molecular dynamics with coupling to an external bath[J]. The Journal of Chemical Physics, 1984, 81(8):3684-3690. doi: 10.1063/1.448118
    [22] WANG J Y, WAN J W, WANG D. Hollow multishelled structures for promising applications: understanding the structure-performance correlation[J]. Accounts of Chemical Research, 2019, 52(8):2169-2178. doi: 10.1021/acs.accounts.9b00112
    [23] WOLSKI P, PANCZYK T. Conformational properties of PAMAM dendrimers adsorbed on the gold surface studied by molecular dynamics simulation[J]. The Journal of Physical Chemistry C, 2019, 123(36):22603-22613. doi: 10.1021/acs.jpcc.9b05752
    [24] 陈素玲,潘明强,田文得. PAMAM树枝形分子与KALP肽相互作用的计算机模拟研究[J]. 高分子学报,2014(8):1062-1069.

    CHEN Suling, PAN Mingqiang, TIAN Wende. Computational study of the interaction between PAMAM dendrimer and KALP peptide[J]. Acta Polymerica Sinica, 2014(8):1062-1069.
  • 加载中
图(9)
计量
  • 文章访问数:  394
  • HTML全文浏览量:  102
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-10
  • 修回日期:  2023-08-30
  • 录用日期:  2023-08-30
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回