Effect of Natural Fracture on Reservoir Temperature Distribution during Fracturing
-
摘要: 水力压裂中前置液除了具有造缝作用,在高温储层中还有不容忽视的降温作用,从而影响水力压裂开采的效果。为研究天然裂缝对前置液降温过程的影响,基于有限体积法模拟了裂缝储层水力压裂温度场,分析了天然裂缝对注液过程中裂缝温度场的影响,在此基础上探讨了天然裂缝参数对储层温度分布及前置液降温效率的影响规律。模拟结果表明:①其他条件相同时,天然裂缝的密度越大、缝宽越宽、与人工裂缝的夹角越小,改造时储层温度降低幅度越大,前置液降温效率越高,储层降温到相同温度时所需前置液用量更少;②天然裂缝密度对裂缝性储层温度场的影响最大,当裂缝密度为0.66 条/m时前置液用量仅为0.16 条/m时的三分之一。③对于深层裂缝性储层水力压裂可以考虑从降温的角度来优化前置液用量及排量,从而降低经济成本。Abstract: In hydraulic fracturing, the pre-fluid not only plays a role of fracture formation, but also plays an important role of cooling in high temperature reservoir, which affects the effect of hydraulic fracturing. In order to study the influence of natural fractures on the cooling process of precursors, the temperature field of hydraulic fracturing in fractured reservoirs was simulated based on the finite volume method, and the influence of natural fractures on the temperature field of fractures in the process of injection was analyzed. On this basis, the influence law of natural fractures parameters on the reservoir temperature distribution and the cooling efficiency of precursors was discussed. Simulation results show that: Other conditions being the same, the greater the density of natural fracture, the wider the fracture width, and the smaller the angle between the fracture and the artificial fracture, the greater the reduction in reservoir temperature during the transformation, the higher the efficiency of the pre-fluid cooling, and the less pre-fluid required to cool the reservoir to the same temperature, natural fracture density parameters on the influence of the temperature field, the largest natural fracture density of 0.66/m pre-fluid dosage is only 1/3 of 0.16/m. Therefore, for hydraulic fracturing of deep fractured reservoirs, it can be considered to optimize the amount and displacement of precursors from the perspective of cooling, so as to reduce the economic cost.
-
Key words:
- Hydraulic fracturing /
- Natural fracture /
- Pre-fluid /
- Cooling effect /
- Finite volume method /
- Stable time
-
表 1 模型基本参数
变量 参数值 地层岩石性质 ρ/(g·cm−3) 2.70 导热系数λrock/(W·(m·K)−1) 5.2 比热容C/(J·(Kg·K)−1) 1 000 前置液性质 AV/mPa·s 100 ρ/(g·cm−3) 1.09 导热系数λl/(W·(m·K)−1) 0.65 初始条件 井底注入温度Ta/℃ 60 地层温度T0/℃ 120 施工排量Q/(m3·min−1) 5 表 2 不同天然裂缝条数的降温速率
密度/(条/m) 0.16 0.33 0.50 0.66 降温速率/(℃/min) 0.287 0.304 0.317 0.335 表 3 不同天然裂缝夹角的降温速率
夹角/(°) 30 45 60 90 降温速率/(℃/min) 0.364 0.350 0.335 0.306 表 4 不同天然裂缝宽度的降温速率
宽度/mm 2 4 6 8 降温速率/(℃/min) 0.291 0.304 0.316 0.327 -
[1] 魏国齐,杨威,谢武仁,等. 四川盆地震旦系—寒武系天然气成藏模式与勘探领域[J]. 石油学报,2018,39(12):1317-1327. doi: 10.7623/syxb201812001WEI Guoqi, YANG Wei, XIE Wuren, et al. Accumulation modes and exploration domains of Sinian-Cambrian natural gas in Sichuan Basin[J]. Acta Petrolei Sinica, 2018, 39(12):1317-1327. doi: 10.7623/syxb201812001 [2] 郭建春,任冀川,王世彬,等. 裂缝性致密碳酸盐岩储层酸压多场耦合数值模拟与应用[J]. 石油学报,2020,41(10):1219-1228. doi: 10.7623/syxb202010006GUO Jianchun, REN Jichuan, WANG Shibing, et al. Numerical simulation and application of multi field coupling of acid fracturing in fractured tight carbonate reservoirs[J]. Acta Petrolei Sinica, 2020, 41(10):1219-1228. doi: 10.7623/syxb202010006 [3] 车明光, 彭建新, 王辽, 等. 深层裂缝性高温高压砂岩储层加砂压裂技术[C]//2018年全国天然气学术年会论文集. 福州: 中国石油学会天然气专业委员会, 2018: 141-146.CHE Mingguang, PENG Jianxin, WANG Liao, et al. Sand fracturing technology for deep fractured high temperature and high pressure sandstone reservoir[C]//Proceedings of the 2018 National Natural Gas Academic Annual Conference. Fuzhou: Natural Gas Professional Committee of China Petroleum Society, 2018: 141-146. [4] DYSART G R, WHITSITT N F. Fluid temperature in fractures[C]//Fall Meeting of the Society of Petroleum Engineers of AIME. New Orleans, Louisiana: SPE, 1967: SPE-1902-MS. [5] KAMPHUIS H, DAVIES D R, ROODHART L P. new simulator for the calculation of the in situ temperature profile during well stimulation fracturing treatments[J]. Journal of Canadian Petroleum Technology, 1993, 32(5):46-54. [6] 任山,张绍彬. 水力裂缝温度场模拟程序的开发和应用[J]. 天然气工业,2002(3):35-38. doi: 10.3321/j.issn:1000-0976.2002.03.010REN Shan, ZHANG Shaobin. Development and application of hydraulic fracture temperature field simulation program[J]. Natural Gas Industry, 2002(3):35-38. doi: 10.3321/j.issn:1000-0976.2002.03.010 [7] 胡晋阳. 裂缝性碳酸盐岩储层水平井酸化温度场模型研究[D]. 成都: 西南石油大学, 2016.HU Jinyang. Research on acidizing temperature field model of horizontal well in fractured carbonate reservoir[D]. Chengdu: Southwest Petroleum University, 2016. [8] 焦国盈,赵立强,刘平礼. 水力压裂中裂缝及近缝地层温度计算模型的改进与应用[J]. 大庆石油地质与开发,2004,23(3):68-69,74. doi: 10.3969/j.issn.1000-3754.2004.03.026JIAO Guoying, ZHAO Liqiang, LIU Pingli. A modified model for the calculation of fracture temperature profiles during hydraulic fracturing[J]. Petroleum Geology and Oilfield Development in Daqing, 2004, 23(3):68-69,74. doi: 10.3969/j.issn.1000-3754.2004.03.026 [9] 王强,胡永全,任岚,等. 水力压裂裂缝及近缝储层温度场[J]. 大庆石油地质与开发,2018,37(1):98-102. doi: 10.19597/j.issn.1000-3754.201703080WANG Qiang, HU Yongquan, REN Lan, et al. Improvement and application of temperature calculation model for fracture and near-fracture formation in hydraulic fracturing[J]. Petroleum Geology and Oilfield Development in Daqing, 2018, 37(1):98-102. doi: 10.19597/j.issn.1000-3754.201703080 [10] 蒲阳峰. 酸压中液氮伴注对裂缝内降温作用研究[J]. 石油化工高等学校学报,2016,29(6):56-60. doi: 10.3969/j.issn.1006-396X.2016.06.012PU Yangfeng. Cooling effect of acid fluid injection with liquid nitrogen on acid fracturing[J]. Journal of Petrochemical Universities, 2016, 29(6):56-60. doi: 10.3969/j.issn.1006-396X.2016.06.012 [11] 刘享,伊向艺,李沁. 酸蚀裂缝温度场微观数值模拟及分析[J]. 石油化工应用,2017,36(9):10-14. doi: 10.3969/j.issn.1673-5285.2017.09.003LIU Xiang, YI Xiangyi, LI Qin. Microscopic numerical simulation and analysis of temperature field of acidic fracture[J]. Petrochemical Industry Application, 2017, 36(9):10-14. doi: 10.3969/j.issn.1673-5285.2017.09.003 [12] 李美晨. 干热岩热储层CO2致裂机理及换热特性研究[D]. 西安: 西安科技大学, 2020.LI Meichen. Study on CO2 fracture mechanism and heat transfer characteristics of dry hot rock thermal reservoirs[D]. Xi'an: Xi'an University of Science and Technology, 2020. [13] VALIULLIN R, SHARAFUTDINOV R, RAMAZANOV A, et al. Investigation of temperature field in the formations by hydraulic fracture[C]//SPE Russian Petroleum Technology Conference. Moscow, Russia: SPE, 2017: SPE-187748-MS. [14] 徐浩然,程镜如,赵志宏. 华北地区碳酸盐岩热储层酸化压裂模拟方法与应用[J]. 地质学报,2020,94(7):2157-2165. doi: 10.3969/j.issn.0001-5717.2020.07.024XU Haoran, CHENG Jingru, ZHAO Zhihong. Numerical study and application of acid-fracturing in the carbonate geothermalreservoirs from North China[J]. Acta Geologica Sinica, 2020, 94(7):2157-2165. doi: 10.3969/j.issn.0001-5717.2020.07.024 [15] 张伟,孙江,曲占庆,等. 高温地热开采热流固耦合模型及综合评价方法[J]. 地球物理学进展,2019,34(2):668-675.ZHANG Wei, SUN Jiang, QU Zhanqing, et al. Thermo-hydro-mechanical coupling model and comprehensive evaluation method of high temperature geothermal extraction[J]. Progress in Geophysics, 2019, 34(2):668-675. [16] LU S M. A global review of enhanced geothermal system (EGS)[J]. Renewable and Sustainable Energy Reviews, 2018, 81(Part 2):2902-2921. doi: 10.1016/j.rser.2017.06.097 [17] SHI J J, CHENG L S, RAO X, et al. A modified embedded discrete-fracture model to study oil-water two-phase heat and mass transfer in the complex fracture network[J]. International Journal of Heat and Mass Transfer, 2021, 175:121215. [18] 杜利,唐果,詹洪阳,等. 碳酸盐岩酸蚀裂缝渗流-传热特性[J]. 科学技术与工程,2021,21(33):14333-14344. doi: 10.3969/j.issn.1671-1815.2021.33.041DU Li, TANG Guo, ZHAN Hongyang, et al. Seepage and heat transfer characteristics of acid corroded fractures in carbonate rock[J]. Science Technology and Engineering, 2021, 21(33):14333-14344. doi: 10.3969/j.issn.1671-1815.2021.33.041 [19] 王英英. 油页岩原位裂解开采中受复杂裂隙影响的温度场数值模拟[D]. 长春: 吉林大学, 2020.WANG Yingying. Numerical simulation of temperature field affected by complex fissures in oil shale in-situ mining[D]. Changchun: Jilin University, 2020. [20] 杨伟,胡冬梅,付超,等. 裂缝角度对含气多孔介质热流耦合特性影响研究[J]. 应用力学学报,2021,38(01):313-317. doi: 10.11776/cjam.38.01.A077YANG Wei, HU Dongmei, FU Chao, et al. Influence of fracture angle on heat flow coupling characteristics of gas-bearing porous media[J]. Chinese Journal of Applied Mechanics, 2021, 38(01):313-317. doi: 10.11776/cjam.38.01.A077 [21] 周科. 热氮气地下原位裂解油页岩温度场数值模拟及野外试验[D]. 长春: 吉林大学, 2017.ZHOU Ke. Numerical simulation of temperature field and field test of in-situ pyrolysis of oil shale with hot nitrogen[D]. Changchun: Jilin University, 2017. [22] 邵兵,闫怡飞,毕朝峰,等. 基于计算流体力学与离散单元法并行计算的煤层气井大粒径岩屑运动规律初探[J]. 科学技术与工程,2017,17(15):42-47. doi: 10.3969/j.issn.1671-1815.2017.15.006SHAO Bing, YAN Yifei, BI Chaofeng, et al. Primary research on movement of big-size cuttings in coal-bed methane wells by parallel computing using coupled CFD-DEM[J]. Science Technology and Engineering, 2017, 17(15):42-47. doi: 10.3969/j.issn.1671-1815.2017.15.006 [23] 王彬桥. 固井顶替数值模拟研究[D]. 北京: 中国石油大学, 2019.WANG Binqiao. Study on numerical simulation of cementing displacement[D]. Beijing: China University of Petroleum(Beijing), 2019. [24] 王辽,沈羞月,王荣. 酸岩反应热对裂缝温度场和酸液有效作用距离的影响[J]. 重庆科技学院学报(自然科学版),2014,16(6):21-24. doi: 10.19406/j.cnki.cqkjxyxbzkb.2014.06.007WANG Liao, SHEN Xiuyue, WANG Rong. Effects of acid-rock reaction heat on fracture temperature field and effective distance of live acid[J]. Journal of Chongqing University of Science and Technology (Natural Science Edition) , 2014, 16(6):21-24. doi: 10.19406/j.cnki.cqkjxyxbzkb.2014.06.007 [25] BARENDS F B. Complete solution for transient heat transport in porous media, following Lauwerier's concept[C]//SPE Annual Technical Conference and Exhibition. Florence, Italy: SPE, 2010: SPE-134670-MS. [26] 赵彦昕,许文俊,王雷,等. 陆相页岩储层水力裂缝穿层扩展规律[J]. 石油钻采工艺,2023,45(1):76-84. doi: 10.13639/j.odpt.2023.01.010ZHAO Yanxin, XU Wenjun, WANG Lei, et al. Through-layer propagation laws of hydraulic fractures in continental shale reservoirs[J]. Oil Drilling & Production Technology, 2023, 45(1):76-84. doi: 10.13639/j.odpt.2023.01.010 [27] 吴百烈,彭成勇,武广瑷,等. 可压性指数对压裂裂缝扩展规律的影响研究——以南海LF油田为例[J]. 石油钻探技术,2023,51(3):105-112.WU Bailie, PENG Chengyong, WU Guang'ai, et al. Effect of fracability index on fracture propagation: A case study of LF Oilfield in South China Sea[J]. Petroleum Drilling Techniques, 2023, 51(3):105-112.