Study and Application of a Fly Ash-slag Bonding Reinforcement Material
-
摘要: 为解决固井低密度水泥浆体系早期强度低、与水泥配伍有偏差以及成本高等问题,以粉煤灰、矿渣为研究对象,使用 XRF、XRD、SEM等检测手段对原材料的化学成分、比表面积及微观形貌进行表征,得出粉煤灰、矿渣颗粒级配分布密集的区域为0.36~89.34、1.56~39.91 μm,比表面积为0.822、1.790 m2/g,且呈现出光滑且密集堆积的现象。通过对增强材料作用机理分析研究,以粉煤灰水泥浆体系的抗压强度为首要技术指标,优选出无机、有机增强材料,并完成各组分配比分析研究,确定增添材料的最优化加量,形成35%KZ+8%FMH+8%WK+3%NY+2%NS+6%CS的增强材料,制备了碱激发粉煤灰矿渣复合胶凝材料,研究了碱激发粉煤灰-矿渣复合胶凝增强材料在QZ、FMH水泥浆体系不同加量的反应进程、微观结构以及抗压强度的变化规律,评价综合性能,当QZ、FMH水泥浆增强材料加量至10%、9%时,其性能达到应用要求。初步现场应用7井次,固井封固井段合格率为100%,固井质量结果达到预期目标,增强材料应用效果良好。Abstract: When using a low-density cement slurry to cement a well, several problems need to be addressed, such as low early strength, deviation in compatibility with cement and high operation cost. To solve these problems, studies were conducted on fly ash and slag for their chemical composition, specific surface area and micromorphology using XRF, XRD and SEM etc. The study results have shown that the particle sizes of the fly ash and slag are distributed mainly in ranges of 0.36 – 89.34 μm and 1.56 – 39.91 μm, respectively, the specific surface area of the fly ash and the slag is 0.822 m2/g and 1.79 m2/g, respectively. The particles of these two materials have smooth surfaces and are closely packed. By analyzing the working mechanisms of the reinforcement materials, some organic and inorganic reinforcement materials were selected, taking the compressive strength of the flay ash cement slurry as the primary technical indicator. The optimum ratios and concentrations of these materials in the final reinforcement material were determined through laboratory studies as follows: 35%KZ+8%FMH+ 8%WK+3%NY+2%NS+6%CS. An alkali-activated fly ash-slag compound bonding reinforcement material was developed. The reaction process, micro structure and compressive strength of the alkali-activated fly ash-slag compound bonding reinforcement material in the QZ and FMH cement slurries were studied. Evaluation of the general performance of the bonding reinforcement material showed that when the concentrations of the bonding e reinforcement material in these two cement slurries are 10% and 9% respectively, the property of the cement slurries is able to meet the requirements of field operations. The bonding reinforcement material has been used in 7 well/times and the well cementing quality was 100% certified, achieving the expected goals.
-
Key words:
- Fly ash /
- Slag /
- Reinforcement material /
- Compressive strength /
- Application effect
-
表 1 用X荧光光谱仪分析物质化学成分(%)
物质 CaO SiO2 Fe2O3 Al2O3 MgO SO3 其他组分 G级水泥 67.59 18.05 5.75 2.67 1.63 2.34 1.97 粉煤灰 10.30 47.96 8.82 20.88 2.57 3.16 6.31 矿渣 45.21 28.56 0.53 14.14 7.10 2.17 2.29 表 2 粉煤灰和矿渣的钙硅比
物质 CaO/SiO2 SiO2/Al2O3 Ca/Si Si/Al 粉煤灰 0.21 6.76 0.30 6.37 矿渣 1.58 2.02 2.26 1.74 表 3 增强材料组分筛选
配方 增强材料组分 p24 h/MPa p48 h/MPa 空白 5.5 9.2 ZQ1 KZ+FMH+CS+WK+AS 6.2 10.1 ZQ2 KZ+FMH+CS+WK+NS+NSO 7.3 11.0 ZQ3 KZ+FMH+CS+WK+NY+QS 8.6 13.2 ZQ4 KZ+FMH+CS+WK+NS+KY 7.5 11.8 ZQ5 KZ+FMH+CS+WK+NS+NY 9.2 14.5 注:空白基础配方为40%G级水泥+9%ZQ+50%FMH+4%GJ-K,W/C=0.80。 表 4 增强材料优化组分配比
配方 FMH/% KZ/% WK/% NY/% CS/% NS/% ZH1 10 30 5 4 5 2 ZH2 5 40 6 3 5 2 ZH3 8 35 8 3 6 2 ZH4 8 35 10 3 6 3 注:基础配方为40%G级水泥+9%ZQ+50%FMH+4%GJ-K,W/C=0.80。 表 5 低密度水泥浆体系性能参数
水泥浆 ρ/
g·cm−3游离液/
%FL/
mL初始稠度/
Bct稠化/
minp 24 h/
MPap 48 h/
MPaFMH 1.55 0.4 48 19 145 10.2 14.1 QZ 1.33 0.8 65 15 193 7.1 12.6 注:失水实验条件为30 min、7 MPa;稠化实验条件为75 ℃、35 MPa;抗压强度实验条件为45 ℃;水灰比为0.80。 表 6 试验井固井质量统计表
井号 封固井
段/m合格率/
%井号 封固井
段/m合格率/
%苏东
42-X4500~
270099.38 苏36-
23-X2300~
285090.23 苏东
27-X3525~
275094.71 郭X 2227~
260599.80 苏东
22-X550~
260099.41 盐37-X 1000~
120098.75 苏14-
17-X800~
300097.07 -
[1] 王亚超,张耀君,徐德龙. 碱激发硅灰-粉煤灰基矿物聚合物的研究[J]. 硅酸盐通报,2011,30(1):50-54.WANG Yachao, ZHANG Yaojun, XU Delong. Study on alkali-excited silicone-fly ash based mineral polymer[J]. Bulletin of the Chinese Ceramic Society, 2011, 30(1):50-54. [2] 肖珊珊. 原材料理化性质对碱激发粉煤灰/矿渣复合体系的影响[D]. 广州:广州大学, 2019.XIAO Shanshan. Effect of physical and chemical properties of raw materials on alkali-activated fly ash/slag blended system [D]. Guangzhou:Guangzhou University, 2019. [3] 肖珊珊,马玉玮,刘荣,等. 原材料理化性质对碱激发粉煤灰/矿渣早期性能的影响[J]. 混凝土,2019(5):89-95.XIAO Shanshan, MA Yuwei, LIU Rong, et al. Effect of raw materials on the early age properties of alkali-activated fly ash/slag[J]. Concrete, 2019(5):89-95. [4] 张云华,蒋卓颖,李雨威,等. 粉煤灰低密度水泥浆在塔河油田堵漏中的应用[J]. 石油与天然气化工,2018,47(1):79-82.ZHANG Yunhua, JIANG Zhuoying, LI Yuwei, et al. Utilization of fly ash low density cement slurry for plugging in Tahe oilfield[J]. Chemical Industry of Oil & Gas, 2018, 47(1):79-82. [5] 刘璐,李明,郭小阳. 一种新型低密度矿渣固井液[J]. 钻井液与完井液,2016,33(6):68-72.LIU Lu, LI Ming, GUO Xiaoyang. A new low density slag cementing slurry[J]. Drilling Fluid & Completion Fluid, 2016, 33(6):68-72. [6] 宫英杰,李洪俊,张恒,等. 低密度水泥浆充填增强材料粒径分布设计方法[J]. 石油天然气学报,2010,32(1):288-290.GONG Yingjie, LI Hongjun, ZHANG Heng, et al. Design method of particle size distribution of low density cement slurry filling reinforcement material[J]. Journal of Oil and Gas Technology, 2010, 32(1):288-290. [7] 杨立荣,王春梅,封孝信,等. 粉煤灰/矿渣基地聚合物的制备及固化机理研究[J]. 武汉理工大学学报,2009,31(7):115-119.YANG Lirong, WANG Chunmei, FENG Xiaoxin, et al. Preparation and consolidation mechanism of fly ash-based geopolymer incorporating slag[J]. Journal of Wuhan University of Technology, 2009, 31(7):115-119. [8] 张弛,陈小旭,李长坤,等. 抗高温硅酸盐水泥浆体系研究[J]. 钻井液与完井液,2017,34(5):62-66.ZHANG Chi, CHEN Xiaoxu, LI Changkun, et al. Study of high temperature silicate cement slurry[J]. Drilling Fluid & Completion Fluid, 2017, 34(5):62-66. [9] 孙晓杰,张维滨,李建华,等. 渤海海域低密度早强水泥浆的室内研究[J]. 钻井液与完井液,2014,31(3):72-74.SUN Xiaojie, ZHANG Weibin, LI Jianhua, et al. Laboratory study on low density early strength cement mud in Bohai Sea[J]. Drilling Fluid & Completion Fluid, 2014, 31(3):72-74. [10] 于永金,刘硕琼,靳建洲,等. 低密度高强度水泥浆体系研究[J]. 西部探矿工程,2012,24(7):33-35.YU Yongjin, LIU Shuoqiong, JIN Jianzhou, et al. Research of cement slurry system with low density and high strength[J]. West-China Exploration Engineering, 2012, 24(7):33-35. [11] 齐志刚. 低温低水化热固井水泥浆体系研究[D]. 青岛: 中国石油大学, 2009.QI Zhigang. Research on a low temperature and low hydration heat cement slurry system[D]. Qingdao: China University of Petroleum (East China), 2009. [12] 刘学勇,杨林虎. 橡胶颗粒对水泥净浆水化产物影响的XRD分析[J]. 公路,2011(4):164-168.LIU Xueyong, YANG Linhu. XRD analysis of effect of crumb rubber on hydration products of cement paste[J]. Highway, 2011(4):164-168. [13] 张博建,彭志刚,冯茜,等. 含有改性CaSO4晶须的固井水泥石的力学性能[J]. 硅酸盐学报,2021,49(10):2286-2297.ZHANG Bojian, PENG Zhigang, FENG Qian, et al. Mechanical properties of cement stone with modified CaSO4 whisker[J]. Journal of the Chinese Ceramic Society, 2021, 49(10):2286-2297.