留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CCUS井工况下不同引晶材料对水泥石裂缝自愈合过程的影响

饶志华 邓成辉 马倩芸 武广瑷 武治强 程小伟

饶志华,邓成辉,马倩芸,等. CCUS井工况下不同引晶材料对水泥石裂缝自愈合过程的影响[J]. 钻井液与完井液,2023,40(4):495-501 doi: 10.12358/j.issn.1001-5620.2023.04.012
引用本文: 饶志华,邓成辉,马倩芸,等. CCUS井工况下不同引晶材料对水泥石裂缝自愈合过程的影响[J]. 钻井液与完井液,2023,40(4):495-501 doi: 10.12358/j.issn.1001-5620.2023.04.012
RAO Zhihua, DENG Chenghui, MA Qianyun, et al.Comparative study on effects of different crystallographic materials on self-healing of fractures in set cement under CCUS well work conditions[J]. Drilling Fluid & Completion Fluid,2023, 40(4):495-501 doi: 10.12358/j.issn.1001-5620.2023.04.012
Citation: RAO Zhihua, DENG Chenghui, MA Qianyun, et al.Comparative study on effects of different crystallographic materials on self-healing of fractures in set cement under CCUS well work conditions[J]. Drilling Fluid & Completion Fluid,2023, 40(4):495-501 doi: 10.12358/j.issn.1001-5620.2023.04.012

CCUS井工况下不同引晶材料对水泥石裂缝自愈合过程的影响

doi: 10.12358/j.issn.1001-5620.2023.04.012
基金项目: 中海油科技项目“CO2封存与利用钻采关键技术研究”(KJGG-2022-12-CCUS-0104 )。
详细信息
    作者简介:

    饶志华,高级工程师,1981年生,硕士研究生毕业于长江大学,现在主要从事海洋油气钻完井技术研究及管理工作。E-mail:raozhh@cnooc.com.cn

  • 中图分类号: TE256

Comparative Study on Effects of Different Crystallographic Materials on Self-healing of Fractures in Set Cement under CCUS Well Work Conditions

  • 摘要: 为了尽快实现碳中和的目标,二氧化碳捕获、利用和封存(Carbon Capture,Utilization and Storage——CCUS)技术不可或缺。由于CCUS高温高压的环境引起较大的应力和温度波动,水泥环易形成裂缝对CO2的安全封存造成威胁。以碳酸钙晶须和氧化石墨烯作为引晶材料诱导水泥石裂缝表面碳化结晶,并研究其对水泥石裂缝自愈合进程的影响。实验结果表明,经过碳化自愈合反应不同的龄期后,分别掺入碳酸钙晶须和氧化石墨烯水泥石的抗压强度均高于空白水泥石。μ-CT的结果分析表明,掺入碳酸钙晶须和氧化石墨烯的水泥石裂缝体积的自愈率分别为55.24%和74.60%,要高于空白水泥石的18.32%;水泥石裂缝表面物相分析表明,随着碳化时间的增加,掺入引晶材料水泥石裂缝表面的CaCO3晶体含量高于空白水泥石。由此说明碳酸钙晶须和氧化石墨烯作为引晶材料可提高水泥石裂缝在CCUS工况下的碳化自愈合能力。

     

  • 图  1  不同实验材料的微观形貌

    图  2  模拟高温高压水泥石碳化自愈合装置示意图

    图  3  水泥石试样碳化自愈合后抗压强度的变化

    图  4  水泥石试样碳化自愈合前(左)后(右)裂缝体积的变化

    图  5  碳化自愈合后水泥石试样裂缝表面XRD分析

    图  6  碳化自愈合后水泥石试样裂缝表面TG分析

    图  7  水泥石试样裂缝表面碳化自愈合前(左)后(右)微观结构变化

    表  1  G级油井水泥化学成分

    化学
    成分
    质量分
    数/%
    化学
    成分
    质量分
    数/%
    化学
    成分
    质量分
    数/%
    Na2O0.23CaO61.79Fe2O34.15
    Al2O33.37SiO220.38烧失量2.61
    MgO1.95K2O0.45其他5.07
    下载: 导出CSV

    表  2  水泥石碳化前后裂缝体积的变化率

    水泥石碳化前裂缝
    体积/mm3
    碳化后裂缝
    体积/mm3
    裂缝自愈率/
    %
    1*-S49.7840.0918.32
    2*-S48.5812.3474.60
    3*-S50.7422.7155.24
    下载: 导出CSV
  • [1] RAO G M, ANDRIANIAINA H, WANG Y. Key driving factor analysis on industrialization and CO2 emission: based on data of Madagascar, China and the United States[J]. BioTechnology:an Indian Journal, 2014, 10(24):14835-14839.
    [2] HE G, ZHANG H L, XU Y, et al. China's clean power transition: current status and future prospect[J]. Resources,Conservation and Recycling, 2017, 121:3-10.
    [3] 秦积舜,李永亮,吴德斌,等. CCUS全球进展与中国对策建议[J]. 油气地质与采收率,2020,27(1):20-28. doi: 10.13673/j.cnki.cn37-1359/te.2020.01.003

    QIN Jishun, LI Yongliang, WU Debin, et al. CCUS global progress and China's policy suggestions[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1):20-28. doi: 10.13673/j.cnki.cn37-1359/te.2020.01.003
    [4] 赵志强,张贺,焦畅,等. 全球CCUS技术和应用现状分析[J]. 现代化工,2021,41(4):5-10. doi: 10.16606/j.cnki.issn0253-4320.2021.04.002

    ZHAO Zhiqiang, ZHANG He, JIAO Chang, et al. Review on global CCUS technology and application[J]. Modern Chemical Industry, 2021, 41(4):5-10. doi: 10.16606/j.cnki.issn0253-4320.2021.04.002
    [5] PIPICH V, SCHWAHN D. Polymorphic phase transition in liquid and supercritical carbon dioxide[J]. Scientific Reports, 2020, 10(1):11861. doi: 10.1038/s41598-020-68451-y
    [6] PETER M A, MUNTEAN A, MEIER S A, et al. Competition of several carbonation reactions in concrete: a parametric study[J]. Cement and Concrete Research, 2009, 38(12):1385-1393.
    [7] GARCÍA-GONZÁLEZ C A, HIDALGO A, ANDRADE C, et al. Modification of composition and microstructure of Portland cement pastes as a result of natural and supercritical carbonation procedures[J]. Industrial & Engineering Chemistry Research, 2006, 45(14):4985-4992. doi: 10.1021/ie0603363
    [8] GONG P, ZHANG C M, WU Z Q, et al. Study on the effect of CaCO3 whiskers on carbonized self-healing cracks of cement paste: Application in CCUS cementing[J]. Construction and Building Materials, 2022, 321:126368. doi: 10.1016/j.conbuildmat.2022.126368
    [9] HAN J D, PAN G H, SUN W, et al. Application of nanoindentation to investigate chemomechanical properties change of cement paste in the carbonation reaction[J]. Science China Technological Sciences, 2012, 55(3):616-622. doi: 10.1007/s11431-011-4571-1
    [10] KUTCHKO B G, STRAZISAR B R, HUERTA N, et al. CO2 reaction with hydrated class H well cement under geologic sequestration conditions: effects of flyash admixtures[J]. Environmental Science and Technology, 2009, 43(10):3947-3952. doi: 10.1021/es803007e
    [11] 严思明,严圣东,吴亚楠,等. 功能材料对固井水泥石力学性能的影响[J]. 石油钻采工艺,2018,40(2):174-178. doi: 10.13639/j.odpt.2018.02.005

    YAN Siming, YAN Shengdong, WU Yanan, et al. Effect of functional materials on mechanical properties of hardened cement paste[J]. Oil Drilling & Production Technology, 2018, 40(2):174-178. doi: 10.13639/j.odpt.2018.02.005
    [12] OMOSEBI O, MAHESHWARI H, AHMED R, et al. Degradation of well cement in HPHT acidic environment: Effects of CO2 concentration and pressure[J]. Cement and Concrete Composites, 2016, 74:54-70. doi: 10.1016/j.cemconcomp.2016.09.006
    [13] CAO M, LI L, YIN H, et al. Microstructure and strength of calcium carbonate (CaCO3) whisker reinforced cement paste after exposed to high temperatures[J]. Fire Technology, 2019, 55(6):1983-2003. doi: 10.1007/s10694-019-00839-3
    [14] 李凤霞,王海波,周彤,等. 页岩油储层裂缝对CO2吞吐效果的影响及孔隙动用特征[J]. 石油钻探技术,2022,50(2):38-44. doi: 10.11911/syztjs.2022006

    LI Fengxia, WANG Haibo, ZHOU Tong, et al. The influence of fractures in shale oil reservoirs on CO2 huff and puff and its pore production characteristics[J]. Petroleum Drilling Techniques, 2022, 50(2):38-44. doi: 10.11911/syztjs.2022006
    [15] 李成嵩, 李社坤, 范明涛, 等. 高密度弹韧性水泥浆力学数值模拟[J]. 钻井液与完井液, 2023, 40(2): 233-240

    LI Chengsong, LI Shekun, FAN Mingtao, et al.Numerical simulation study on mechanics of high density elastic and tough cement slurries[J]. Drilling Fluid & Completion Fluid, 2023, 40(2): 233-240
    [16] ZHANG D, GHOULEH Z, SHAO Y X. Review on carbonation curing of cement-based materials[J]. Journal of CO2 Utilization, 2017, 21:119-131. doi: 10.1016/j.jcou.2017.07.003
    [17] 王芬,余军霞,肖春桥,等. CO2碳化法制备微米级球霰石型食品碳酸钙的研究[J]. 硅酸盐通报,2017,36(1):43-50,56.

    WANG Fen, YU Junxia, XIAO Chunqiao, et al. Preparation of mico-size food-grade vaterite CaCO3 by CO2 carbonization method[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(1):43-50,56.
    [18] HOU D S, LU Z Y, ZHAO T J, et al. Reactive molecular simulation on the ordered crystal and disordered glass of the calcium silicate hydrate gel[J]. Ceramics International, 2016, 42(3):4333-4346. doi: 10.1016/j.ceramint.2015.11.112
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  421
  • HTML全文浏览量:  167
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-15
  • 修回日期:  2023-05-22
  • 刊出日期:  2023-07-30

目录

    /

    返回文章
    返回