Development and Evaluation of a Hyperbranched Polymer for Temporary Plugging Coalbed Methane
-
摘要: 针对煤层气开采过程中的储层损害问题,基于暂堵储层保护理论,以甲基丙烯酸甲酯、甲基丙烯酸酐及叔羧基甜菜碱为原料,研制了一种超支化聚合物暂堵剂MTA,并评价了其综合性能。红外图谱表明,3种单体已成功共聚,其热分解温度高达252 ℃;理化性能分析表明,MTA的分子量为6×104,胺值为17.52,溶液为碱性,平均粒径在0.69~3.32 μm;MTA减缓压力传递性能远优于常用封堵剂,抑制黏土膨胀性能与聚胺抑制剂相当,可使黏土层间距由1.92 nm降低至1.58 nm;MTA在压差作用下封堵岩石微孔隙,阻止水进入地层,并通过电荷作用吸附在岩石表面,形成层状结构阻止水分子向岩石渗透。结果表明,MTA与工作液其他处理剂具有良好的配伍性,可使工作液砂盘滤失量降低41.2%;在150 ℃下,MTA工作液具有优异的持效性和抗污染性能,可耐10%NaCl、5%CaCl2或10%劣质土,其岩心渗透率恢复值可达87.3%,综合性能优异。MTA工作液现场应用,井径扩大率小于5%,具有优异的井壁稳定效果。Abstract: To solve the problem of reservoir damage in coalbed methane development, a hyperbranched polymer temporary plugging agent MTA was developed based on the theory of reservoir protection by temporary plugging. The synthesis of MTA involves the use of raw materials such as methyl methacrylate, methyl acrylic anhydride and tert-carboxyl betaine etc. The performance of MTA was evaluated in laboratory experiment. IR spectroscopy shows that the three monomers have successfully copolymerized to form a new polymer. The thermal decomposition temperature of MTA is 252 ℃. Physical-chemical performance analysis results show that MTA has a molecular weight of 6 × 104, an amine number of 17.52, a pH of greater than 7.0 and an average particle size of 0.69-3.32 μm. Compared with the commonly used plugging agents, MTA has better ability in reducing pressure transmission. The capacity of MTA in inhibiting the swelling of clays is equivalent to the inhibitive capacity of polyamines; it reduces the interlayer space of a clay from 1.92 nm to 1.58 nm. Under the action of a differential pressure, MTA can plug the micropores in formation rocks to stop the invasion of water into the formation. Furthermore, MTA can be adsorbed onto the surfaces of a rock by the action of electric charges, thereby forming a layered structure to hinder the filtration of water molecules into the rock. Evaluation of MTA reveals that MTA has good compatibility with other additives in a working fluid, and reduces the amount of filtrate of the work fluid by 41.2%. At 150 ℃, MTA working fluid has excellent performance sustainability and contamination resistance; it is resistant to contamination by 10% NaCl, or 5% CaCl2, or 10% clays of poor quality. Rock samples treated with the MTA fluid have their permeability recovered by 87.3%. In field operations, MTA showed excellent performance in maintaining borehole stability; the rate of hole washout was less than 5%.
-
表 1 MTA的理化性能测试结果
分子量 胺值 浓度/(g∙L−1) pH 6×104 17.52 1 10.03 3 10.42 5 10.48 7 10.51 表 2 MTA的粒径分布测试结果
MTA/% D10/μm D50/μm D90/μm 0.5 0.03 0.69 2.71 1.0 0.11 0.84 3.48 1.5 0.27 1.36 4.16 2.0 0.32 3.32 5.64 表 3 暂堵工作液的抗温性能
T热滚/
℃AV/
mPa∙sPV/
mPa∙sYP/
PaGel/
Pa/PaFLAPI/
mLFLHTHP/
mL热滚前 36 23 13 18/8 4.0 90 30 20 10 9/6 3.4 7 120 34 21 13 10/6 4.0 7 150 39 23 16 11/5 5.0 10 注:FLHTHP在 150 ℃测定。 表 4 暂堵工作液的抗污染性能(150 ℃、16 h)
配方 热滚
条件AV/
mPa∙sPV/
mPa∙sYP/
PaGel/
Pa/PaFLAPI/
mLFLHTHP/
mL优化工作液 热滚前 36 23 13 12/5 4.0 热滚后 39 23 16 8/3 5.0 10 +10%NaCl 热滚前 48 38 10 16/5 2.8 热滚后 41 29 12 12/5 5.4 18 +5%CaCl2 热滚前 53 36 17 12/5 2.2 热滚后 27 17 10 6/3 5.8 20 +10%劣质土 热滚前 80 69 11 26/13 2.4 热滚后 56 42 14 18/9 3.4 14 注:热滚条件均为150 ℃、16 h。 表 5 暂堵工作液的储层保护性能评价结果
配方 K0/mD Kd/mD Kd/K0/% 传统工作液 0.072 0.028 38.9 优化工作液 0.063 0.055 87.3 表 6 MTA超支化聚合物钻井液的性能
井深/m ρ/(g∙cm-3) FV/s FLAPI/mL 井径扩大率/% 750 1.02 47 1.2 3.54 760 1.02 49 1.4 3.63 770 1.02 49 1.4 3.42 780 1.02 51 1.2 4.71 790 1.02 48 1.2 4.02 800 1.02 49 1.6 3.81 -
[1] 任美洲. 煤层气钻井过程中的储层保护技术研究[J]. 云南化工,2021,48(3):131-132. doi: 10.3969/j.issn.1004-275X.2021.03.46REN Meizhou. Research on reservoir protection technology in the process of coalbed methane drilling[J]. Yunnan Chemical Technology, 2021, 48(3):131-132. doi: 10.3969/j.issn.1004-275X.2021.03.46 [2] 马腾飞. 浅析煤层气钻井过程中的储层伤害及保护技术[J]. 化工管理,2018(11):58-59. doi: 10.3969/j.issn.1008-4800.2018.11.044MA Tengfei. Analysis on reservoir damage and protection technology during coalbed methane drilling[J]. Chemical Management, 2018(11):58-59. doi: 10.3969/j.issn.1008-4800.2018.11.044 [3] 肖沛瑶. 暂堵转向压裂技术用暂堵剂研究新进展[J]. 石油化工应用,2019,38(10):1-5,24. doi: 10.3969/j.issn.1673-5285.2019.10.001XIAO Peiyao. Research of temporary plugging agent for temporary plugging diverting fracturing[J]. Petrochemical Industry Application, 2019, 38(10):1-5,24. doi: 10.3969/j.issn.1673-5285.2019.10.001 [4] 赵明伟,高志宾,戴彩丽,等. 油田转向压裂用暂堵剂研究进展[J]. 油田化学,2018,35(3):538-544.ZHAO Mingwei, GAO Zhibin, DAI Caili, et al. Advancement of temporary plugging agent for fracturing in oilfield[J]. Oilfield Chemistry, 2018, 35(3):538-544. [5] 王彦玲,原琳,任金恒. 转向压裂暂堵剂的研究及应用进展[J]. 科学技术与工程,2017,17(32):196-204. doi: 10.3969/j.issn.1671-1815.2017.32.031WANG Yanling, YUAN Lin, REN Jinheng. The progress in research and application of temporary plugging agent for diverting fracturing[J]. Science Technology and Engineering, 2017, 17(32):196-204. doi: 10.3969/j.issn.1671-1815.2017.32.031 [6] 赵祥龙. 煤层气钻井过程中的储层伤害与保护探究[J]. 云南化工,2021,48(3):110-112. doi: 10.3969/j.issn.1004-275X.2021.03.38ZHAO Xianglong. Research on reservoir damage and protection during coalbed methane drilling[J]. Yunnan Chemical Technology, 2021, 48(3):110-112. doi: 10.3969/j.issn.1004-275X.2021.03.38 [7] 卢国军,刘彬,王力,等. 中国煤层气储层伤害分析及钻井液储层保护研究现状[J]. 煤田地质与勘探,2016,44(2):121-126. doi: 10.3969/j.issn.1001-1986.2016.02.022LU Guojun, LIU Bin, WANG Li, et al. Analysis of CBM reservoir damage and status of research on reservoir protection with drilling fluids in China[J]. Coal Geology & Exploration, 2016, 44(2):121-126. doi: 10.3969/j.issn.1001-1986.2016.02.022 [8] 魏安超,刘书杰,蒋东雷,等. 裂缝性储层环氧树脂自降解堵漏剂的制备与评价[J]. 钻井液与完井液,2023,40(2):163-168. doi: 10.12358/j.issn.1001-5620.2023.02.003WEI Anchao, LIU Shujie, JIANG Donglei, et al. Synthesis and evaluation of epoxy resin self-degradation plugging agent for fractured formation[J]. Drilling Fluid & Completion Fluid, 2023, 40(2):163-168. doi: 10.12358/j.issn.1001-5620.2023.02.003 [9] 李国锋,刘洪升,张国宝,等. ZD-10暂堵剂性能研究及其在普光气田酸压中的应用[J]. 河南化工,2012,29(5):23-26. doi: 10.3969/j.issn.1003-3467.2012.05.030LI Guofeng, LIU Hongsheng, ZHANG Guobao, et al. Peformance study of ZD-10 temporary plugging and lts application in Puguang gas field acid pressure process[J]. Henan Chemical Industry, 2012, 29(5):23-26. doi: 10.3969/j.issn.1003-3467.2012.05.030 [10] LI C, QIN X, LI L, et al. Preparation and performance of an oil-soluble polyethylene wax particles temporary plugging agent[J]. Journal of Chemistry, 2018, 2018:7086059(1-7). [11] 许洁,许林,李习文,等. 新型储层钻井完井一体化工作液设计及性能评价[J]. 钻井液与完井液,2023,40(2):184-192. doi: 10.12358/j.issn.1001-5620.2023.02.006XU Jie, XU Lin, LI Xiwen, et al. Design and evaluation of an integrated drilling and completion fluid[J]. Drilling Fluid & Completion Fluid, 2023, 40(2):184-192. doi: 10.12358/j.issn.1001-5620.2023.02.006 [12] 谷穗,蔡记华,常德武,等. 使用纳米碳酸钙降低低孔低渗煤层气储层伤害[J]. 地球科学(中国地质大学学报),2015,40(6):1093-1100.GU Hui, CAI Jihua, CHANG Dewu, et al. Reducing formation damage to low-porosity and low-permeability CBM reservoirs using calcium carbonate nanoparticles[J]. Earth Science, 2015, 40(6):1093-1100. [13] 李丹,刘建仪,安维杰,等. 新型抗高温水溶性暂堵剂实验研究[J]. 应用化工,2011,40(12):2071-2074,2079. doi: 10.3969/j.issn.1671-3206.2011.12.007LI Dan, LIU Jianyi, AN Weijie, et al. Research of high temperature water-soluble temporary plugging agent[J]. Applied Chemical Industry, 2011, 40(12):2071-2074,2079. doi: 10.3969/j.issn.1671-3206.2011.12.007 [14] 方俊伟,张翼,李双贵,等. 顺北一区裂缝性碳酸盐岩储层抗高温可酸溶暂堵技术[J]. 石油钻探技术,2020,48(2):17-22. doi: 10.11911/syztjs.2020006FANG Junwei, ZHANG Yi, LI Shuanggui, et al. Acid-soluble temporary plugging technology for ultra-deep fractured carbonate reservoirs in block 1 of the Shunbei Area[J]. Petroleum Drilling Techniques, 2020, 48(2):17-22. doi: 10.11911/syztjs.2020006 [15] 许可,高航,石阳,等. 储层改造用暂堵材料研究进展[J]. 应用化工,2022,51(7):2074-2078. doi: 10.3969/j.issn.1671-3206.2022.07.043XU Ke, GAO Hang, SHI Yang, et al. Research progress of temporary plugging materials for reservoir stimulation[J]. Applied Chemical Industry, 2022, 51(7):2074-2078. doi: 10.3969/j.issn.1671-3206.2022.07.043 [16] 王林杰. 煤层气钻井过程中的储层伤害及保护技术[J]. 云南化工,2021,48(2):160-161. doi: 10.3969/j.issn.1004-275X.2021.02.56WANG Linjie. Research on reservoir damage and protection technology during coalbed methane driilling[J]. Yunnan Chemical Technology, 2021, 48(2):160-161. doi: 10.3969/j.issn.1004-275X.2021.02.56 [17] 刘国卫. 煤层气钻井过程中的储层伤害及保护技术研究[J]. 西部探矿工程,2019,31(6):53-55. doi: 10.3969/j.issn.1004-5716.2019.06.020LIU Guowei. Study on reservoir damage and protection technology during coalbed methane drilling[J]. West-China Exploration Engineering, 2019, 31(6):53-55. doi: 10.3969/j.issn.1004-5716.2019.06.020